

भारत सरकार / Government of India अंतरिक्ष विभाग / Department of Space विक्रम साराभाई अंतरिक्ष केंद्र / VIKRAM SARABHAI SPACE CENTRE

तिरुवनंतपुरुम / Thiruvananthapuram - 695 022

तकनीकी सहायक (विद्युत इंजीनीयरी, विज्ञा.सं.291) के पद के चयन हेतु लिखित परीक्षा
WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT (ELECTRICAL ENGG., ADVT. NO. 291)
पद सं.1285 / Post No 1285

सर्वाधिक अंक/Maximum Marks : 320 अभ्यार्थी का नाम/Name of the candidate :	ाताथ/Date: 28.08.2016 समय/Time. 2 घंटे/ hours अनुक्रमांक सं/Roll no.	
	v an molecule to allegate significa-	
Marie Carlo and and an area and a second		

अभ्यर्थियों के लिए अनुदेश /Instructions to the Candidates

 आपके द्वारा वेब आवेदन में प्रस्तुत किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। <u>यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता</u> नहीं रखते हैं तो आपकी अभ्यर्थिता अस्वीकृत कर दी जाएगी।

You have been called for the written test based on the online data furnished by you in the web application. If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.

- 2. परीक्षा हॉल में निरीक्षक की उपस्थिति में ही आपको हॉल-टिकट पर हस्ताक्षर करना चाहिए। You should sign the hall ticket only in the presence of the Invigilator in the examination hall.
- 3. प्रश्न-पत्र, 80 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 02 घंटे है ।
 The Question paper is in the form of Question Booklet with 80 questions and the duration of the test is 02 hours.
- 4. प्रश्नों के उत्तर देने के लिए दूसरी प्रति सहित अलग ओएमआर उत्तर-पुस्तिका दी जाएगी। A separate OMR answer sheet with duplicate will be provided to mark the answer options.
- 5. प्रत्येक प्रश्न केलिए 04 अंक होंगे और प्रत्येक गलत उत्तर केलिए एक अंक काटा जाएगा । Each question carries 04 marks and one mark will be deducted for each wrong answer.

- 6. <u>ऊपर दाएँ कोने में मुद्रित प्रश्न-पुस्तिका श्रेणी कोड (ए/बी/सी/डी/ई), ओएमआर उत्तर पुस्तिका पर निर्दिष्ट स्थान पर लिखना चाहिए।</u>
 - Question booklet series code (A/B/C/D/E) printed on the right hand top corner should be written in the OMR answer sheet in the place provided.
- 7. प्रश्न-पुस्तिका में आपका नाम तथा अनुक्रमांक सही लिखें। Enter your Name and Roll Number correctly in the question booklet.
- 8. ओएमआर उत्तर-पुस्तिका में सभी प्रविष्टियां **नीली/काली स्याही के बॉल पाइंट पेन** से ही की जानी चाहिए। All entries in the OMR answer sheet should be with **blue/black ball point pen** only.
- 9. चार विकल्पों सहित वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्घ रूप से सही होगा । The questions will be objective type with four options out of which only one will be unambiguously correct.
- 10. आपको, उत्तर-पुस्तिका में दिए गए अनुदेशों के अनुसार, नीली/काली स्याही के बॉल पाइंट पेन से ओएमआर उत्तर-पुस्तिका में संबंधित ऑवल को अंकित कर सही उत्तर का चयन करना है। You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen.
- एक प्रश्न के लिए अनेक उत्तर गलत माना जाएगा ।
 Multiple answers for a question will be regarded as wrong answer.

inside the written test hall.

D

- 12. <u>लिखित परीक्षा चलनेवाले हॉल के अंदर कंप्यूटर, कालकुलेटर, मोबाइल फोन तथा अन्य इलेक्ट्रॉनिक जुगतें, पाठ्य-पुस्तकें, नोट आदि लाने की अनुमति नहीं दी जाएगी।</u>

 <u>Computers, calculators, mobile phones and other electronic gadgets, text books, notes etc., will not be allowed</u>
- 13. परीक्षा पूर्ण होने पर, ओएमआर उत्तर-पुस्तिका को ऊपर के छेद्रन चिह्न से फार्डे और मूल ओएमआर उत्तर-पुस्तिका निरीक्षक को सौंपे तथा दूसरी प्रति आपके पास रखें।

 On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.
- प्रश्न-पुस्तिका अभ्यर्थी अपने पास रख सकते हैं।
 The question booklet can be retained by the candidates.
- 15. परीक्षा के प्रथम घंटे के दौरान अभ्यर्थियों को परीक्षा हॉल छोड़ने की अनुमति नहीं है। Candidates are not permitted to leave the examination hall during the first hour of the examination.

तकनीकी सहायक - विद्युत (1285) Technical Assistant - Electrical (1285)

सम	ान वो	ल्टता ट	दर के	200W	एवं	860W	की	बत्ती	के	बीच	200W	बत्ती	का	प्रतिरोध
-		J												
Bet		200 W ar		lamps	of the	same v	oltag	ge rating	g, the	resist	ance of	200 W	lamp	will be
(a)	उच्च	तर/High	er											
(b)	समा	न/Same												
(c)	आपू	र्ति की प्र	कृति के	अनुसार	बदल	ता/Var	ies w	ith natı	ire of	suppl	y			
(d)	_	नतर/Lov	•	3										
										Sin.	20			
	•	संधारित्र					5 —	्वारा वि	देया उ	नाता है	है।			
1 he	energ	y of a cha	.—.			94.								
(a)	$\frac{Q}{2V}$		(b)	$\frac{2V}{O}$		(c)	$\frac{QV}{2}$		((d) $\frac{2}{2}$	$\frac{v}{o}$		
				•				-			-	Y		
एक	पी -पं	ल मशी	न के लि	ए, विद्	युत ए	वं यांत्रि	क डि	ग्रियों वे	के बीच	व के	संबंध व	ने		
द्वा	रा दिय	ा जाता है	5											¥.
For	a P-po	le machi	ne, the r	elation b	etwee	en elect	rical	and me	chan	ical de	egrees is	given l	by	
(a)	$\theta_{ m elec}$ =	$=\frac{2}{P}\theta_{\text{mech}}$	(b)	$\theta_{\rm elec}$ =	$=\frac{4}{P}\theta_{\rm m}$	nech (c)	$\theta_{\text{elec}} = I$	$\theta_{ m mech}$	ı ((d) θ_{el}	$ec = \frac{P}{2} \theta_n$	nech	
Р	गोल र्व	ने संख्य	ा तथा	N rpm	की	गति	से र	ाकत ए	क व	ीसी	जनित्र	में चंब	कीय	विपर्यय
						(0)		. · ·				3	-	
In a		nerator l		number	of po	les and	spee	d of N	rpm,	the fro	equency	of mag	netic	
	PN		(L)	PN		(-		PN		,	1) PI	,		
(a)	60		(0)	120		(6	;)	240		(d) $\frac{PR}{2}$	-		
डीसी	शंट	मोटर 20	0 वो. में	संभरण	ा करत	ता है। व	यदि .	आर्मेचर	धार	T 20 A	A तथा	आर्मेचर	का	प्रतिरोध
		विकसि												
ΑD	C shu	nt motor	runs at	200 V	supp	ly, if th	ne ar				20 A a	ınd resi	stance	e of the
arm	ature is	0.5Ω , th	ne back e	e.m.f dev	velope	ed will l	be							

(a) 210 वो./V

(c) 190 वो./V

(b) 200 वो./V

(d) 180 वो./V

		लक को —— onductor have e						-	नकता	होती है।		
(a)	1	0 ⁻⁵	(b)	10 ⁻³		(c)	10 ⁴		(d)	10		
								ž				
		50 Hz के एक 3 ase 3 element er						~	_			— है।
(a)	20	00 V	(b)	240 V		(c)	415 V		(d)	440 V		
					° E							
		r.m.s मान — a.s value of A.C			– के सम	ान है।						
(a)	0.	.637 का अधिक	तम म	ान/0.637	of max.	value						
(b)	0.	707 का अधिक	तम म	ान/0.707	of max.	value						
(c)	1.	414 का अधिक	तम म	ान/1.414	of max.	value						
(d)	31	धिकतम मान/]	The ma	aximum	value							
प्रति	ने चर	ण प्रति पोल वृं	नडिलय	ों की संव	<u> ज्या</u> ——			- है।			1.	
		umber of coils p						-				
(a)	and a second	ntal no.of coils No.of phases				(b)		tal no.of o hases × No		es		
(c)	<u>T</u>	otal no.of phases No.of coils				(d)	Management of the Control of the Con	nases × no cal no of c	The second secon	<u>es</u>		
A 1	ap w	वूंड डी सी मशी ——— की round DC mach the machine gen	वोल्टत ine ha	ा उत्पन्न s 400 co	करती है। nductors							
(a)		00 V	(b)	200 V		(c)	400 V		(d)	800 V		

11	।. एक कप	प्लन टर्बाइन ———— है।
	A Kapl	an turbine is
	(a) 31	गंतरिक प्रवाह आवेगी टर्बाइन/Inward flow impulse turbine
	(b) ब	ाह्य प्रवाह प्रतिघाती टर्बाइन/Outward flow reactive turbine
	(c) 3	च्च शीर्ष मिश्रित प्रवाह टर्बाइन/A high head mixed flow turbine
	(d)	ोम्न शीर्ष अक्षीय प्रवाह टर्बाइन/Low head axial flow turbine
12.		मी. लंबाई की एक केबिल का विद्युत रोधन प्रतिरोध 1 MΩ है तथा उसी केबिल की
	100 कि.	मी. लंबाई की विद्युत रोधन प्रतिरोध ———होगी।
	The insucable the	ilation resistance of a cable of length 10 km is 1 M Ω and for a length of 100 km of the same e insulation resistance will be
	(a) 1 N	$M\Omega$ (b) 10 $M\Omega$ (c) 0.1 $M\Omega$ (d) 0.01 $M\Omega$
13.	एक आर	एलसी श्रेणी परिपथ ———— पर मुख्यतः प्रेरणिक रहता है।
		series circuit remains predominantly inductive
	(a) अन्	नुनाद आवृत्ति पर/At resonance frequency
	(b) अन्	नाद आवृत्ति के नीचे/Below resonance frequency
	(c) अनु	नाद आवृत्ति के ऊपर/Above resonance frequency
	(d) निम	न्न अर्ध शक्ति अनुनाद पर/At lower half power frequency
14.	सामान्यत	ः एक प्रोत्कर्ष को 600कि. मी. तक शीर्षस्थ संचरण रेखा द्वारा जाने में ——————
	समय लग	
	The time	taken for a surge to travel 600 km long over head transmission line is typically
	(a) 6 से	
d.		tarija ar amazam ultaran ase i i je i je i je

15.	चालू स्थिति में 3-कला प्रेरण मोटर का अधिकतम टॉर्क — है।	
	The maximum torque of a 3-phase induction motor under running conditions is	T
	(a) संभरण वोल्टता के प्रतिलोमतः आनुपातिक/Inversely proportional to supply voltage	
	(b) स्टैंड स्टिल में रोटर प्रतिघात के प्रतिलोमतः आनुपातिक/Inversely proportional reactance at stand still	to rotor
	(c) रोटर प्रतिरोध के पूर्णतः आनुपातिक/Directly proportional to rotor resistance	
	(d) उपर्युक्त में से कोई नहीं/None of the above	
16.	चल कुंड़ली यंत्र में, अवमंदन टॉर्क — द्वारा विकसित होता है। In a moving coil instrument, the damping torque is developed by	
	(a) वायु घर्षण/Air-friction (b) भंवर धारा/Eddy-current	
	(c) गुरुत्व घर्षण/Gravity-friction (d) तरल घर्षण/Fluid-friction	
	en Herrigani Retain 100 de la 100 de	
17.	एक घर में 4kW संबद्ध भार हैं तथा इसमें एकल कला संभरण का उपयोग किया जाता	है। घर के
	लिए कौन-से ऊर्जा मीटर रेंज उपयुक्त होगा।	
	A house has 4kW connected loads and is fed by single phase supply. What range energ recommended for the house?	y meter is
	(a) 50 A (b) 15 A (c) 30 A (d) 10 A	
18.	$1~\mathrm{mA}$ मीटर के रेंज को $10~\mathrm{mA}$ रेंज में बदलना है। मीटर की चल कुंडली में $36~\Omega$ का प्र	ातिरोध है।
	समानांतर में संबद्ध करने हेतु प्रतिरोध का मूल्य कितना है?	• 4
	The range of 1 mA meter is to be changed to 10 mA. The moving coil of the meter has a of 36 Ω . What is the value of resistance to be connected in parallel?	resistance
	(a) 3Ω (b) 4Ω (c) 5Ω (d) 6Ω	
10	4-पोल, 25kW, 200V, तरंग वूंड डीसी शंट जिनत्र में, प्रत्येक समानंतर पथ में धारा ——	
19.	होगी।	
d:	In a 4-pole, 25kW, 200V wave wound DC shunt generator, the current in each parallel pa	th will be
	(a) 125A (b) 62.5A (c) 31.25A (d) 250A	

20. 120 V स्रोत में 1 Ω का श्रेणी आंतरिक प्रतिरोध है। एक लोड में लगाने योग्य अधिकतम शक्ति
————— है।

A 120 V source has a series internal resistance of 1 Ω . The maximum power that can be delivered to a load is

- (a) 1800 W
- (b) 3600 W
- (c) 800 W
- (d) 14400 W
- 21. चित्र में दिखाए गए अनुसार प्रतिरोध R के बारह तारों को एक घन/क्यूब बनाने के लिए जोड़ा गया है। क्यूब के विकर्ण छोर(1 से 7 तक) के बीच का प्रभावी प्रतिरोध है।

 Twelve wires, each of resistance R, are connected to form a cube as in figure. The effective resistance between the diagonal ends of the cube (1 to 7) is

- (a) 5R/6
- (b) 6R/5
- (c) 3R
- (d) 12R
- 22. H(s) = 1/s से युक्त एक रैखिक प्रणाली को एक इकाई सोपान फलन निवेश द्वारा उत्तेजित किया गया। t>0 के लिए निर्गम ———— है।

A linear system with H(s)=1/s is excited by a unit step function input. The output for t>0 is given by

- (a) $\delta(t)$
- (b) 1
- (c) t
- (d) t^2

23. चित्र में I_x तथा I_y का क्रमशः मान क्या है? The value of I_x and I_y in the figure respectively?

- (a) 0, 9
- (b) -9, 3
- (c) -3, 9
- (d) 3, -9

24	4. अधिकतम संभव गति जिससे प्रत्यावर्तक 50 Hz तथा 4000V को उत्पन्न करने के लिए ले र	नाया
	जा सकता है — है।	<i>7</i> 11 -11
	The maximum possible speed at which an alternator can be driven to generate 50 and 4000V is	Hz
	(a) 1500 आरपीएम/rpm (b) 3000 आरपीएम/rpm	
	(c) 4000 आरपीएम/rpm (d) 3600 आरपीएम/rpm	
		ē
25.	. यदि I_m तथा I_s वाइन्डिंग के क्रमशः मुख्य एवं प्रारंभक धारा हों, तो खंडित कला मोटर द्	वारा
	विकसित टॉर्क ———— के आनुपातिक है।	
	If I _m and I _s are the currents in the main and starting windings respectively, the torque developed a split phase motor is proportional to	by
	(a) I_m एवं I_s के बीच कोणीय साइन/Sine of angle between I_m and I_s	
	(b) Im एवं Is के बीच कोणीय कोसाइन/Cosine of angle between Im and Is	
	(c) मुख्य वाइंडिंग धारा, I _m /Main winding current, I _m	
	(d) सहयक वाइंडिंग धारा, I Auxiliary winding current, Is	
	which is	
26.	घरेलू रेफ्रिजरेटर में उपयुक्त मोटर — है।	
	The motor used in household refrigerators is	
	(a) डीसी श्रेणी के मोटर/DC series motor	
	(b) डीसी शंट मोटर/DC shunt motor	
	(c) उभयाधार मोटर/universal motor	
	(d) एकल चरण प्रेरण मोटर/single phase induction motor.	
	The lattice value of real-in	
	The 4Ω Sylphony would not be 1.1.	
27.	dana netra it man abo	
۷1.	विद्युत मशीन में एक पोल-पिच — के समान है। A pole-pitch in an electrical machine is equal to	
	11 pote piten in an electrical machine is equal to	
	(a) 90 विद्युत डिग्री/electrical degrees (b) 120 विद्युत डिग्री/electrical degrees	
-	(c) 180 विद्युत डिग्री/electrical degrees (d) 360 विद्युत डिग्री/electrical degrees	

- 28. अंग्रेज़ी वर्णमाला से एक वर्णमाला को चुना जाता है। स्वर के चयन की संभाव्यता का पता लगाएं। An alphabet is chosen from English alphabets. Find the probability of choosing a Vowel?
 - (a) 1/26
- (b) 5/26
- (c) 21/26
- (d) 0
- 29. $\sin 120^{0} \cos 330^{0} + \cos 240^{0} \sin 330^{0}$ का मान ξ ।

 The value of $\sin 120^{0} \cos 330^{0} + \cos 240^{0} \sin 330^{0}$ is ?
 - (a) 1
- (b) −1
- (c) 0
- (d) $\frac{\sqrt{3}}{2}$

- 30. $\lim_{x\to\infty} \frac{2x^2 + 3x + 4x}{x^2 + 4x + 1}$ का मान है।
 - The value of $\lim_{x\to\infty} \frac{2x^2+3x+4x}{x^2+4x+1}$ is?
 - (a) 2
- (b) 3
- (c) 3/4
- (d) 4

- 31. cos(x) से sin(x) की व्युत्पत्ति है।
 - Derivative of sin(x) with respect to cos(x)
 - (a) $-\cot(x)$
- (b) cot(x)
- (c) tan(x)
- (d) -tan(x)
- 32. बिंदु पर 2x + 3y + 9 = 0 रेखा पैराबोला $y^2 = 8x$ को छूती है।

 The line 2x + 3y + 9 = 0 touches the parabola $y^2 = 8x$ at the point
 - (a) 0, -3
- (b) 4, 2
- (c) 9/2, -6
- (d) -6, 9/2

33.	गोलक के विभव को ————	— द्वारा व्य	क्त किया जाता है	
	Potential of a sphere is given by			
	(a) $\frac{Q}{\pi \epsilon_0 r}$	(b)	$\frac{Q}{4\pi\epsilon_0 r}$	
	(a) $\frac{Q}{\pi \epsilon_0 r}$ (c) $\frac{Q^2}{4\pi \epsilon_0 r^2}$	(d)	$\frac{Q}{4\pi\epsilon_0 r}$ $\frac{Q}{4\pi\epsilon_0 r^2}$	
34.	ग्लास परावैद्युत के बीच प्रयुक्त वे	ल्टता वायु की	तुलना में 10 गुना अधिक विद्युत	। क्षेत्र उत्पन्न
	करता है। ग्लास की परावैद्युतांक —	* ****	— है।	
	Voltage applied across a glass dielectric constant of glass is	etric produces a	n electric field 10 times that of air.	The
	(a) 0.1	(b)	10	
	(c) 100	(d)	0.01	
35.	आइ ई नियम के अनुसार चालक ए	वं भूमि के बीच	का विद्युतरोधन प्रतिरोध ——	——— से
	कम नहीं होना चाहिए।			
	As per I.E Rules the insulation resist	ance between o	conductor and Earth should not be le	ess than
	(a) 100 MΩ/आउटलेट की सं./no.	of outlets		
	(b) 80 MΩ/आउटलेट की सं./no. o	f outlets		
	(c) 50 MΩ/आउटलेट की सं./no. c	f outlets		
	(d) 30 MΩ/आउटलेट की सं./no. o	f outlets		990
36.	0.001μF की क्षमता के वायु संधारि	त्र को 200 वो.	के डीसी वोल्टता से जोड़ा गया है	। संधारित्र में
	संचित ऊर्जा — होग	ो।		
	An air condenser with capacitance stored in the condenser will be	0.001 μF is co	onnected to a dc voltage of 200 V	. The energy
	(a) 10 μ जूल/10 μ joules	(b)	20 μ जूल/20 μ joules	

(c) 20 जूल/20 joules

(d)

10 जूल/10 joules

37.		त्रिकला (50Hz) पूर्ण परि three phase (50Hz) full					
	(a)	50 Hz (b)	100 Hz	(c)	150 Hz	(d)	300 Hz
38.	तरंग A si	ा रूप	– होगा।				प्रतिलोमक में धारा क e load, the waveform o
	(a)	ज्सावक्रीय/Sinusoidal		(b)	आयताकार/R	Rectangular	•
	(c)	समलंब/Trapezoidal		(d)	त्रिभुजाकार/	Γriangular	
39.		चुंबकीय पदार्थ क्यूरी त ve Curie temperature, a				ान जाता है	rī .
	(a)	फेर्रोचंबकीय/ferromagn	etic	(b)	पाराचुंबकीय/]	paramagne	tic
	(c)	डायाचुंबकीय/diamagne			~		52.4
40.		आवृत्ति ट्रांसफॉर्मर क्रोड n frequency transformer				निर्मित हैं।	
	(a)	फेर्राइट्स/Ferrites		(b)	एमयू-धात्/M	u-metal	
	(c)	मॉन धातु/Mone-metal		(d)			None of the above
41.		प्रभाव — effect can be used to me		रने के ी	लिए उपयोग (केया जाता	है।
	(a)	विद्युत क्षेत्र तीव्रता/Ele	ectric field intens	sity			
	(b)	चुंबकीय क्षेत्र तीव्रता/M	agnetic field inte	ensity			
~:	(c)	वाहक सांद्रण/Carrier co	oncentration				
	(d)	उपर्युक्त में से कोई न	None of these				

42.	एक ट्रांसफॉर्मर वोल्टता को 100 गुना बढ़ाता है। प्राइमरी और सेकेंडरी में धारा का अनुपात क्या होगा? A transformer steps up voltage by a factor 100. The ratio of current in the primary to that in the secondary is
	(a) 1 (b) 100 (c) 0.01 (d) 0.1
43.	बूलीय तर्क व्यंजक (A'B'C' + A'BC' + A'BC + ABC') के लघुकृत रूप को — प्रकार
	से घटाया जा सकता है।
	The minimised form of Boolean logic expression (A'B'C' + A'BC' + A'BC + ABC') can be reduced to
	(a) $A'C' + BC' + A'B$ (b) $A'C' + B'C' + A'B$
	(c) $A'C + BC + A'B$ (d) $AC + BC' + AB$

44. एक सीढ़ी का स्विच (दूसरी मंजिले पर रखे स्विच पर विचार किए बिना प्रत्येक मंजिले की स्विच का एक बत्ती परस्वतंत्र नियंत्रण होता है) यह किस प्रकार का तर्क है।

A staircase switch (where the switch in each floor has independent control over one lamp irrespective of the position of the switch in other floor) is which logic

- (a) NAND (b) NOR (c) XOR (d) OR
- 45. एक लघु संचरण रेखा में, प्रतिरोध व प्रतिघात समान पाए जाते हैं तथा भार नियमन शून्य प्रतीत होता है, भार में होगी।

 In a short transmission line, resistance and reactance are found to be equal and load regulation appears to be zero, the load will
 - (a) इसमें एकक शक्ति गुणक होगी/Have unity power factor
 - (b) इसमें शून्य शक्ति गुणक होगी/Have zero power factor
 - (c) इसमें 0.707 की पश्चतता होगी/Have 0.707 lagging
 - (d) इसमें 0.707 की अग्रकता होगी/Have 0.707 leading

46.	. एक परिपथ में $22~\Omega$ की प्रतिबाधा है तथा वह परिपथ 0.8 की शक्ति गुणक पश्चता से
	10 एम्पीयर धारा खींचता है। निम्नलिखित में से कौन-सी आभासीय शक्ति होगी?
	A circuit has an impedance of 22 Ω and drawing a current of 10 amperes at 0.8 power factor lagging. Which one of the following will be the apparent power?
	(a) 2.2 kVA (b) 22 kVA (c) 220 kVA (d) 1.76 kVA
47.	3-ф संतुतित परिपथ के शक्ति मापन हेतु जब दो वॉटमापी का उपयोग किया जाता है तथा एक वॉटमापी ऋणात्मक दिखाती है, इसका मतलब यह है कि पश्चता कोण ————— है। When two wattmeters are used to measure power of a 3-ф balanced circuit and one wattmeter reads
	negative, it means the angle of lag is
	(a) 0° (b) 30° (c) 60° (d) 60° 社 3547/Above 60°
48.	15Ω के तीनों समान प्रतिरोधों को डेल्टा में 400 V, 3-कला संभरण के बीच संबद्ध किया गया है। प्रत्येक के समतुल्य स्टार संबद्ध भार के प्रतिरोध का मूल्य — होगा। Three identical resistances, each of 15Ω are connected in delta across 400 V, 3-phase supply. The value of resistance in each leg of the equivalent star-connected load would be
	(a) 15Ω (b) 7.5Ω (c) 5Ω (d) 30Ω
	and the second of the second field of the field of the second field of the second of t
49.	3-फेज़, 3-लाइनवाली 100 कि.मी. लंबी संचरण लाइन को 110 किलोवोल्ट (KV) से लोड किया गया
	है। यदि प्रत्येक फेज़ की हानि 5MW है तथा लोड 150 MVA है तो लाइन का प्रतिरोध ————— होगा।
	A 3-phase, 3-line, 100 Km long transmission line is loaded at 110 KV. If the loss per phase is 5 MW and the load is 150 MVA, the resistance of line is.
	(a) 8.06Ω /phase (b) 0.806Ω /phase (c) 0.0806Ω /phase (d) 80.6Ω /phase
	the charge are recognized from and the control about the second and appearing the second
0.	3-कला परिपथ में एक प्रेरण मोटर 1000 rpm सिहत तुल्यकालिक गति 935 rpm में
	5 यांत्रिक एच पी विकसित करता है। स्टेटर निवेश क्या है यदि स्टेटर ह्रास 400 W है?
æ,	A 3-phase induction motor with a synchronous speed of 1000 rpm develops 5 mechanical hp at 935 rpm. What is the stator input if the stator loss is 400 W?
	(a) 5.6 kW (b) 4.4 kW (c) 3.6 kW (d) 7.2 kW

51.	एक सिलिकन ट्रांसिस्टर में, उत्सर्जक धारा में 8 mA का बदलाव, संग्राही धारा में 7.8 mA का
	बदलाव उत्पन्न करता है। संग्राही धारा में समतुल्यता उत्पन्न कराने के लिए आधार धारा में
	कितना बदलाव लाना ज़रूरी है।
	In a silicon transistor, a change of 8 mA in emitter current produces a change of 7.8 mA in the collector current. What change in base current is necessary to produce an equivalent change in collector current?
	(a) 0.1 mA (b) 0.2 mA (c) 0.4 mA (d) 0.8 mA
52.	1.2 kΩ आंतरिक प्रतिरोध के सिग्नल स्रोत को, 140 वोल्टता वृद्धि सहित, एक प्रवर्धक के निवेश से
	जोड़ा जाता है। कुल 100 की वृद्धि पाने हेतु प्रवर्धक में निवेश प्रतिरोध का निम्नतर मान कितना
	होगा?
	A signal source of internal resistance $1.2 \text{ k}\Omega$ is connected to the input of an amplifier with a voltage gain of 140. What is the value of input resistance the amplifier should have to get an overall gain of 100?
	(a) $1 \text{ k}\Omega$ (b) $2 \text{ k}\Omega$ (c) $3 \text{ k}\Omega$ (d) $1.5 \text{ k}\Omega$
53.	एक श्रव्य प्रवर्धक में, 20 Hz की निम्न अंतक आवृत्ति तथा 20 KHz की उच्च अंतक आवृत्ति तथा
00.	12 Ω का लोड है। 1 KHz पर प्रवर्धक, लोड को 20 W प्रदान करता है। समान इनपुट वोल्टता
	के लिए 20 Hz में rms लोड वोल्टता कितनी होगी?
	An audio amplifier has a lower cutoff frequency of 20 Hz and upper cutoff frequency 20 KHz has a load of 12 Ω . At 1 KHz the amplifier delivers 20 W to the load. What is the rms load voltage at 20 Hz, for identical input voltage?
	(a) 10.95 वॉ./V (b) 12.35 वॉ./V (c) 16.12 वॉ./V (d) 3.48 वॉ./V
54.	वृद्धि A_v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m_v है। पुनर्निवेश(फीडबैक) सहित
54.	पुनर्निवेश(फीडबैक) के बिना एक प्रवर्धक का अरैखिक विरुपण D है। प्रवर्धक में विवृत पाश वोल्टता वृद्धि A _v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m _v है। पुनर्निवेश(फीडबैक) सहित अरैखिक विरूपण — होगा। The non-linear distortion of an amplifier is D without feedback. The amplifier has an open loop voltage gain of A _v and negative feedback fraction of m _v . The non-linear distortion with feedback will be
54.	वृद्धि A _v एवं ऋणात्मक पुनर्निवेश(फीडबैक) भिन्न(फ्रैक्शन) m _v है। पुनर्निवेश(फीडबैक) सहित अरैखिक विरूपण — होगा। The non-linear distortion of an amplifier is D without feedback. The amplifier has an open loop voltage gain of A _v and negative feedback fraction of m _v . The non-linear distortion with feedback

55.	यदि किसी डीसी मोटर का फ्लक्स अपरिवर्तित रहता है तथा आपूर्ति वोल्टता में 20% की वृद्धि की
	जाती है, यह देखा जाता है कि धारा पूर्व समान रहती है तो, इसकी गति —————
	If flux of a DC Motor is unchanged, and supply voltage is increased by 20%, it is observed that the current remained same as earlier. Its speed ———————————————————————————————————
	(a) अपरिवर्तित रहेगी/Remain unchanged
	(b) 20% से बढ़ेगी/Increases by 20%
	(c) 20% से घटेगी/Decreases by 20%
	(d) उपर्युक्त में से कोई नहीं/None of the above
56.	प्राप्त मोटर के टॉर्क को निम्नलिखित द्वारा परिवर्तित किया जा सकता है।
	The torque of a given motor can be varied by
	(a) फ्लक्स परिवर्तन से/Changing flux
	(b) आर्मेचर धारा परिवर्तन से/Changing armature current
	(c) फ्लक्स एवं आर्मेचर धारा दोनों के परिवर्तन से/Changing flux and armature current both
	(d) समांतर पथ की संख्या के परिवर्तन से/Changing no. of parallel paths
57.	ट्रांस्फॉर्मर का नियमन — है।
	The regulation of a transformer is
	(a) $\frac{v_0 - v}{v_0} \times 100\%$ (b) $\frac{v_0 - v}{v + v_0} \times 100\%$ (c) $\frac{v - v_0}{v} \times 100\%$ (d) $\frac{v - v_0}{v_0} \times 100\%$
58.	4 Pole , 3¢ प्रेरण मोटर 3¢, 50 Hz संभरण में कार्य करता है। यदि मोटर का स्लिप 4% है
	तो उसकी वास्तविक गति — होगी।
	A 4 Pole , 3ϕ induction motor works on 3ϕ , 50 Hz supply. If the slip of the motor is 4%, the actual speed will be
	(a) 1500 आरपीएम/rpm (b) 1460 आरपीएम/rpm

(c) 1440 आरपीएम/rpm

(d) 720 आरपीएम/rpm

	Wh	at should be the value	of earth resistar	nce for a la	arge powe	er station?					
	(a)	1 Ω		(b)	0.5 Ω						
	(c)	2 Ω		(d)	5 Ω						
60.	संचा	र लाइन के पास (क्षी	तेज एवं ऊर्ध्वा	धर रूप र	ते) पावर	केबिल लगाने	हेतु न्यूनत	म निष्कासन			
	क्या	होना चाहिए?									
	What should be the minimum clearance for laying power cables near communication line										
	(hor	rizontally and vertically	y)?								
	(-)	0.2		(L)	0.6						
	(a) (c)	0.2 m 1 m		(b) (d)	0.6 m 1.5 m						
	(0)	1 111		(u)	1.5 ш						
61.	गत्र	मादकोणोसेस्य में भोत	ी-कोट फेरा मार	₹किय		है।					
01.											
	ln a	microprocessor, op-co	de letch cycle 1	s?							
	(a) अनुदेश साइकिल का अंतिम भाग/Last part of instruction cycle										
	(b) अन्देश साइकिल का प्रथम भाग/First part of instruction cycle										
	(c) अन्देश साइकिल का मध्य भाग/Intermediate part of instruction cycle										
	(d) बस द्वारा डेटा रिसेप्शन/Data reception through bus										
62.	∫sir	$\mathbf{n}(x) dx$ का समाकलन		—— है।		o Jost roul					
	∫sir	n(x) dx is			- 38						
٠,											
	(a)	sin(x)		(b)	cos(x)	7					
	(c)	$-\sin(x)$		(d)	$-\cos(x)$						

59. एक बड़े पावर स्टेशन का भूमि प्रतिरोध क्या होना चाहिए?

63. असंख्य बस में एक तुल्यकालिक जिनत्र को लगाने पर वह पश्चता शक्तिगुणक पर शक्ति देती है। जब इसके फील्ड उत्तेजन को बढ़ाया जाता है, इसका प्रभाव क्या है?

A synchronous generator connected to an infinite bus delivers power at lagging power factor. If its field excitation is increased, what is the effect?

(a) टिर्मिनल वोल्टता बढ़ जाती है/Terminal voltage increases

(b) कोण की वोल्टता बढ़ जाती है/Voltage angle increases

(c) वितरण की गई धारा बढ़ जाती है/Current delivered increases

(d) उपर्युक्त सभी/All of the above

64.	दीर्घ शीर्षस्थ रेखाओं पर फरांती प्रभाव का अनुभव तब होता है जब —————								
	The Farranti effect on long over head lines is experienced when								

- (a) जब रेखा में थोड़ा बहुत भार डाला जाता है/The line is slightly loaded
- (b) शक्ति गुणक में एकता होती है/Power factor is unity
- (c) शक्ति गुणक में अग्रकता होती है/Power factor is leading
- (d) कोरोणा प्रभाव जब अधिक प्रभावी होता है/Corona effect is dominant
- 65. निर्वात परिपथ विच्छेदक में सबसे अधिक समस्या क्या होती है? Which is the most serious problem in vacuum circuit breaker
 - (a) अपर्याप्त आर्क क्वेन्चिंग/Poor arc quenching
 - (b) निम्न ऊष्मीय स्थायित्व/Low thermal stability
 - (c) धारा चोप्पिंग/Current chopping
 - (d) ऊपर्युक्त सभी/All of the above
- 66. धारा को वहन करनेवाले चालक में लगे चुंबकीय क्षेत्र के दिशा को ———— द्वारा पता लगाया जा सकता है।

The direction of magnetic field set up in a current carrying conductor can be found out by

- (a) फ्लेमिंग्स दक्षिणावर्ती नियम/Flemings right hand rule
- (b) फ्लेमिंग्स वामावर्ती नियम/Flemings left hand rule
- (c) कॉर्क स्क्रू नियम/Cork screw rule
- (d) थंब नियम/Thumb rule

67.	ग्रेम	कार्य क्षेत्र के लिए अपेष्टि	रेत पटीपक जहाँ म	श्चिम	कार्य किया जाता है का	कम			
07.	ऐसे कार्य क्षेत्र के लिए अपेक्षित प्रदीपक जहाँ सूक्ष्म कार्य किया जाता है, का क्रम ————— होगा।								
	The Illumination required for a work place where fine work is performed will be of the order of								
	(a)	500 ल्यूमेन/वर्ग मीटर/1	umens/sq.m ((b)	1000 ल्यूमेन/वर्ग मीटर/1	umens/sq.m			
÷	(c)	1500 ल्यूमेन/वर्ग मीटर/	lumens/sq.m ((d)	2000 ल्यूमेन/वर्ग मीटर/1	umens/sq.m			
68.	प्रतिव	दीप्तिजनक ट्यूब की ज्य	ोति दक्षता ——		है।				
00.		inous efficiency of a flu							
	(a)	10 ल्यूमेन/वाह/10 lume	ens/W	(b)	20 ल्यूमेन/वाह/20 lumer	ns/W			
	(c)	60 ल्यूमेन/वाद्ट/60 lume		(d)	150 ल्यूमेन/वाह/150 lun				
	(0)	oo t qui alle 100 min	·	(-)					
		× o	- the property of the	E0+0	~ · · · · · · · · · · · · · · · · · · ·				
69.	20 से 100 KHz में प्रचालित एसएमपीएस में, मुख्य स्विचिंग घटक क्या है?								
	In an SMPS, operating at 20 to 100 KHz, what is the main switching element?								
	(a)	थाइरिस्टर/Thyristor	((b)	मोस्फेट/MOSFET				
	(c)	ट्रिएक/Triac		(d)	यूजेटी/UJT	an addin April			
					aus na rooffrejstier e				
70.	एक 100 V डी सी के स्रोत व 0.1 H के इंडिक्टिव लोड के बीच लोड को नियंत्रित करने के लिए								
	एक थाइरिस्टर का प्रयोग किया गया है। थाइरिस्टर की लैचिंग धारा 100 mA है। थाइरिस्टर के								
	चालू करने के लिए उसके गेट पर न्यूनतम पल्स चौड़ाई क्या होगी?								
	Between a 100 V DC source and a 0.1 H inductive load, a thyristor is used to control the load. The latching current of the thyristor is 100 mA. What is the minimum pulse width to be applied to the								
		aing current of the thyrist of the thyrist of the thyristor to turn it		hat is	s the minimum pulse wid	ith to be applied to the			
				(a)	1 ms (d)	50 μs			
	(a)	100 μs (b)	100 5	(c)	This (d)	ου με			
					agnetic field ser open on				
			elas leise m		विशास्त्र विस्मानि विस्मानिक राज				
71.		z परिशोधक के लिए फि							
	Тур	ical value of filter capaci	tor for a 50Hz recti	ifier'					
e,	(a)	1000 μ F (b)	50 μF	(c)	1000 pF (d)	100 pF			

18

72. नीचे दिए गए चित्र के अनुसार, 2Ω प्रतिरोधक से स्थिर स्थिति धारा — है। In the Figure shown, Steady state current through 2Ω resistor ?

- (a) 1.2 A
- (b) 0.9 A
- (c) 0.6 A
- (d) 5.2 A

73. चित्र में, $R=1\Omega$, i का मान क्या है? In the figure, $R=1\Omega$, what is the value of i?

74. एक एचटीएमएल पेज में, tag के अलावा निम्निलिखित में से कौन-सा घटक टेक्स्ट को मोटा करता है?

In a HTML page, apart from tag which of the following make the text bold?

(a) <fat>

(a)

- (b)
- (c) <emp>
- (d) <thick>
- 75. छः बिट संख्याओं को द्वि पूरक, एक पूरक व चिहन तथा परिमाण रूप में दिखाया मानें। इनमें से किसमें 011000 तथा 011000 पूर्णांकों का जोड़ अतिप्रवाह का कारण बनेगा?

Consider the representation of six-bit numbers in two's complement, one's complement and sign and magnitude format. In which representation, the addition of integers 011000 & 011000 will result in an overflow.

- (a) द्वि पूरक मात्र/In Two's complement only
- (b) एक प्रक एवं द्वि प्रक/In one's complement and two's complement
- (c) चिह्न व परिमाण व एक पूरक/Sign and magnitude and one's complement
- (d) तीनों में/In all three

76.	प्रेरण मोटर की संभरण वोल्टता 10% द्वारा घटा दी जाती है। करीबन कितने प्रतिशत से अधिकतम टॉर्क घटेगी? The supply voltage to an induction motor is reduced by 10%. By what percentage, approximately, will the maximum torque decrease?								
	(a)	20%	(b)	50%	(c)	40%	(d)	10%	
77.	घटा The	व(स्लिप 3%	6) ————————————————————————————————————	है।					Cu प्रति चरण '. The rotor Cu
	(a)	176W	(b)	492W	(c)	1050W	(d)	728W	
78.		no load spe संभरण अ इसके पोल अधिकतम	eed of an indu गवृत्ति/The su न की संख्या/	iction motor descripply frequency The number of The maximum and (b)	epends on y its poles		रेत है।		
79.	निम्नलिखित पदार्थों में से किसे प्रतिरोध की ऋणात्मक ताप गुणांक है? Which of the following materials have negative temperature coefficient of resistance?								
	(a)	पीतल/Bra	SS		(b)	तांबा/Cop	per		
	(c)	कार्बन/Ca	rbon		(d)	एलुमिनिय	म/Aluminiu	ım	
00	teru.	- 			este et e gazeta hazatar	4	TO 1000 YES		n famili Marian Gen bar
80.	ज्यावकीय तरंग रूप के लिए रूप गुणक — है। For a sinusoidal wave form, form factor is								
d,	(a)	1.11	(b)	1.00	(c)	2.22	(d)	0.55	

D