

भारत सरकार/Government of India अंतरिक्ष विभाग/Department of Space

विक्रम साराभाई अंतरिक्ष केंद्र/VIKRAM SARABHAI SPACE CENTRE

तिरुवनंतपुरुम/Thiruvananthapuram - 695 022

प्रशिक्षित स्नातक अध्यापक (कार्य अनुभव) (विज्ञा.सं. 325) के पद पर चयन हेतु लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF TRAINED GRADUATE TEACHER (WORK EXPERIENCE) (ADVT. NO. 325)

पद सं. 1499 / Post No. 1499

सर्वाधिक अंक/Maximum Marks : 180 अभ्यर्थी का नाम/Name of the candidate :		तिथि/Date: 04.02.2024 समय/Time. 03 घंटे/ 03 hours अनुक्रमांक सं/Roll no.		
1	· ke			

अभ्यर्थियों के लिए अनुदेश /Instructions to the Candidates

1. आपके द्वारा वेब आवेदन में प्रस्तुत किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता नहीं रखते हैं तो आपकी अध्यर्थिता अस्वीकृत कर दी जाएगी।

You have been called for the written test based on the online data furnished by you in the web application. If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.

- 2. प्रश्न-पत्र, 180 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 03 घंटे है।

 The Question paper is in the form of Question Booklet with 180 questions and the duration of the test is 03 hours.
- 3. चार विकल्पों सहित वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्घ रूप से सही होगा।
 The questions will be objective type with four options out of which only one will be unambiguously correct.
- 4. प्रत्येक प्रश्न के लिए 01 अंक होंगे और गलत उत्तरों के लिए अंक नहीं काटा जाएगा। Each question carries 01 mark. There will be no negative marks for the wrong answers.

- 5. प्रश्नों के उत्तर देने के लिए कार्बन विलेपित प्रति सहित अलग ओएमआर उत्तर-पुस्तिका दी जाएगी। A separate OMR answer sheet with carbon coated copy will be provided to mark the answer options.
- 6. आपको नीली/काली स्याही के बॉलपाइंट पेन से ओएमआर उत्तर-पुस्तिका में संबंधित ऑवल को अंकित कर सही उत्तर का चयन करना है।

You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen.

- एक प्रश्न के लिए अनेक उत्तर गलत उत्तर माना जाएगा।
 Multiple answers for a question will be regarded as wrong answer.
- ऊपर दाएँ कोने में मुदित प्रश्न-पुस्तिका के कोड को ओएमआर उत्तर-पुस्तिका में दिए गए स्थान पर लिखना चाहिए।

Question booklet code printed on the top right comer should be written in the OMR answer sheet in the space provided.

- 9. प्रश्न-पुस्तिका में आपका नाम तथा अनुक्रमांक सही लिखें। Enter your Name and Roll Number correctly in the question booklet.
- 10. ओएमआर उत्तर-पुस्तिका में सभी प्रविष्टियां **नीली/काली स्याही के बॉल पाइंटपेन** से ही की जानी चाहिए। All entries in the OMR answer sheet should be with **blue/black ball point pen** only.
- 11. परीक्षा हॉल में निरीक्षक की उपस्थिति में ही आपको हॉल-टिकट पर हस्ताक्षर करना चाहिए। You should sign the hall ticket only in the presence of the Invigilator in the examination hall.
- 12. लिखित परीक्षा चलने वाले हॉल के अंदर कंप्यूटर. कालकुलेटर. मोबाइल फोन तथा अन्य इलेक्ट्रॉनिक उपकरण, पाठ्य-पुस्तकें, नोट आदि लाने की अनुमित नहीं दी जाएगी।

 Computers, calculators, mobile phones and other electronic gadgets, text books, notes etc., will not be allowed inside the written test hall.
- 13. <u>परीक्षा पूर्ण होने पर, ओएमआर उत्तर-पुस्तिका को ऊपर के छेदन चिहन से फाईं और मूल ओएमआर उत्तर-</u> पुस्तिका निरीक्षक को सौंपें तथा दूसरी प्रति आपके पास रखें।

On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.

- 14. प्रश्न-पुस्तिका अभ्यर्थी अपने पास रख सकते हैं। The question booklet can be retained by the candidates.
- 15. परीक्षा के दौरान अभ्यर्थियों को परीक्षा हॉल छोड़ने की अनुमति नहीं है। Candidates are not permitted to leave the examination hall during the examination.

प्रशिक्षित स्नातक अध्यापक (कार्य अनुभव) / TRAINED GRADUATE TEACHER (WORK EXPERIENCE)

PART - I

1.	The	synonym for the wore	d 'Slender' is			
	(a)	Slim		(b)	Sturdy	
	(c)	Strong		(d)	Slippery	
2.	The	antonym of the word	"Hostile" is:			
	(a)	Accountable				
	(b)	Amicable				
	(c)	Dangerous				
	(d)	Lethal			£2	
3.	Sele	ect the wrongly spelle	d word.			
	(a)	Whimsical		(b)	Contiguous	681
	(c)	Spectaculer	ii)	(d)	Inquisitive	
4.	Sele	ect one word for 'Work	sing very hard and	l very c	arefully'	
	(a)	Dilatory		(b)	Indulgent	
	(c)	Diligent		(d)	Indigent	
5.		in the blank: The rezing.	oad at 15000 feet	is not	easily navigable as the air is ———	and
	(a)	Rarefied				
	(b)	Intensified				
	(c)	Exalted				
	(d)	Elevated				

ь.		elect the error segment in the sentence: 'No sooner had Kavya started her online class that is web connection was lost.'				
	(a)	started her online class		P. Carlotte and P. Carlotte an		
	(b)	that the web connection				
	(c)	No sooner had Kavya				
	(d)	was lost				
7.	The	idiom "Over one's head" stands for:				
	(a)	unable to function as before				
	(b)	beyond one's capability to understand	someth	ning		
	(c)	being at a disadvantage				
	(d)	something totally unexpected				
8.	Cha	nge the voice: "They are making elabora	te arra	angements for the party.'		
	(a)	Elaborate arrangements were being m	ade for	the party		
	(p)	Elaborate arrangements are being made	de for t	the party		
	(c)	Elaborate arrangements are made for	the par	rty		
	(d)	Elaborate arrangements have been ma	de for	the party		
9.	Imp	rove the sentence: 'When the little girl le	oses he	er doll, she began to cry.'		
	(a)	loss her doll .	(b)	lost her doll		
	(c)	losing her doll	(d)	loosing her doll		
10.	Improve the sentence: 'A simple life of freedom and happiness is one of the more difficult thing to achieve.'					
	(a)	one of the more difficult things to achie	eve			
	(b)	one of the most difficult things to achie				
	(c)	one of the most difficult thing to achiev	⁄e			
	(d)	one of the more difficult thing for achie	ving			

11.	उपनाम का पिलान राष्ट्र ह		
	(a) अन्वय	(b)	व्यतिरेक
	(c) उपमेय	(d)	उपरूप
12.	स्थावर का विलोम शब्द है		
	(a) चंचल	(b)	अचल
	(c) अस्थिर	(d)	जंगम
13.	इत्यादि का सन्धि-विच्छेद है		
	(a) इति + आदि	(b)	इत्य + आदी
	(c) इत + आदि	(d)	इती + आदि
14.	किसी प्रस्ताव का समर्थन करने की क्रिया		
	(a) अनुमोदन	(b)	अपमोदन
	(c) प्रमोदन	(d)	प्रस्तावित
15.	जो मापा नहीं जा सके		E.
	(a) अपरिमेय	(b)	परिमेय
	(c) परिमाप	(d)	परिमानित
16.	'चौराहा' में समास है ————		
	(a) कर्मधारय	(b)	द्वन्द्व
	(c) तत्पुरुष	(d)	द्विगु
17.	'भभूत' का तत्सम शब्द है ————		
	(a) भभूति	(b)	विभूति
	(c) बभूति	(d)	भवभ्ति
18.	काठ का उल्लू		
	(a) महामूर्ख	(b)	महाबुद्धिमान
	(c) नगण्य	(d)	महाविनोदी
19.	जागृति शब्द का विलोम है		
	(a) सुस्मिति	(b)	सुकृति
	(c) सुषुप्ति	(d)	सुनियति
20.	कान में तेल डाले रहना		
	(a) स्वास्थ्य लाभ करना	(b)	चुप्पी साधे बैठे रहना
	(c) गंभीर विचार करना	(d)	गंभीर वार्तालाप करना

PART - II

21.	नोबे	ल शांति पुरस्कार 2023 में किसे प्रदान किया	गया?	
	Nob	pel Peace Prize 2023 was awarded to:		
	(a)	जॉन फॉसे / Jon Fosse	(b)	नर्गेस मोहम्मदी / Narges Mohammadi
	(c)	मलाला यौसफ्जई / Malala Yousafzai	(d)	एलेस बियालियात्स्की / Ales Bialiatski
22.	'विव	निसत भारत @2047' उपक्रमण, जिसे हाल ही	में लॉन	च किया गया था, का लक्ष्य है
	Vik	ssit Bharat @2047' Initiative, which was	launcl	ned recently, aims to?
	(a)	मैला ढोने की प्रथा को ख़त्म करें / Elimina	te mar	nual scavenging
	(b)	्धार्मिक और जातिगत मुद्दों को खत्म करें /]	Elimin	ate religious and caste issues
	(c)	विचारों को योगदान देने के लिए युवाओं को	शामिल	नरें / Engage youth to contribute ideas
	(d)	विचारों में योगदान देने के लिए महिलाओं व	को शामि	लि करें / Engage women to contribute ideas
23.	स्थि Nev	त है?		् जुआरी ब्रिज, किस राज्य/केंद्र शासित प्रदेश में sayed bridge in India, is located in which
	(a)	अरुणाचल प्रदेश / Arunachal Pradesh	(b)	पंजाब / Punjab
	(c)	गोवा / Goa	(d)	जम्मू और कश्मीर/Jammu and Kashmir
	1			
24.		ि में 2023 लीफ एरिकसन लूनर पुरस्कार		
	Wh	o has been recently awarded with the 2	023 Le	if Erikson Lunar Prize?
	(a)	ISRO	(b)	NASA
	(c)	JAXA	(d)	ROSCOSMOS
25.	जिर	सकी मई 2023 में नाटकीय दुर्घटना ने डिजि	नंटल पी	रेसंपत्ति बाजार में व्यापक वित्तीय अस्थिरता पैदा
	कर	दी उस क्रिप्टोकरेंसी की पहचान करें।		
		entify the cryptocurrency whose dramat tability in the digital asset market.	ic crasl	n in May 2023 triggered widespread financial
	(a)	बिटकॉइन / Bitcoin	(b)	लिटकॉइन / Litecoin
	(c)	रिप्पल / Ripple	(d)	टेरा यूएसडी / TerraUSD

26.	निम्नलिखित में से कौन ऑस्ट्रेलिया की राजधानी	着 ?	
	Which of the following is the capital of Aust	ralia?	
	()	<i>a</i> >	4

(a) सिडनी / Sydney

(b) कैनबरा / Canberra

(c) मेलबोर्न / Melbourne

(d) न्यूयॉर्क / New York

27. जापान की मुद्रा क्या है?

What is the currency of Japan?

(a) वोन / Won

(b) येन / Yen

(c) युआन / Yuan

- (d) रिंगित / Ringgit
- 28. पुस्तक "व्हाई भारत मैटर्स" के लेखक कौन हैं?
 Who is the author of the book titled "Why Bharat Matters"?
 - (a) अमित शाह / Amit Shah
 - (b) निर्मला सीतारमण / Nirmala Sitharaman
 - (c) एस. जयशंकर / S. Jaishankar
 - (d) राजनाथ सिंह / Rajnath Singh
- 29. भारत सरकार ने प्रत्येक वर्ष 23 अगस्त को घोषित किया है: Government of India has declared August 23 of every year as:
 - (a) राष्ट्रीय विज्ञान दिवस / National Science Day
 - (b) राष्ट्रीय पर्यावरण दिवस / National Environment Day
 - (c) राष्ट्रीय खगोल विज्ञान दिवस / National Astronomy Day
 - (d) राष्ट्रीय अंतरिक्ष दिवस / National Space Day
- 30. चंद्रमा पर पहली लैंडिंग कब हुई थी?

When the first moon landing took place?

- (a) 20 जुलाई 1969 / July 20, 1969
- (b) 4 अक्टूबर 1961 / October 4, 1961
- (c) 23 अगस्त 2023 / August 23, 2023
- (d) 10 अक्टूबर 1968 /October 10, 1968

31. लुप्त संख्या ज्ञात कीजिए

Find the missing number

2	5	6	28
4	9	9	77
3	7	6	?

(a) 40

(b) 39

(c) 38

(d) 56

32. श्रृंखेला 6, 5, 24, 25, 144, — में अगली संख्या क्या है?

What is the next number in the series 6, 5, 24, 25, 144, ———?

(a) 145

(b) 143

(c) 175

(d) 187

33. 256842 को 8 का गुणज बनाने के लिए इसमें कौन सी संख्या जोड़ी जानी चाहिए?

What number must be added to 256842 to make it a multiple of 8?

(a) 8

(b) 4

(c) 6

(d) 2

34. छह पुरुषों B, D, C, M, J और K को तीन-तीन के दो समूहों में विभाजित किया गया है और दो पंक्तियों में खड़ा किया गया है, जैसे कि एक पंक्ति में एक आदमी दूसरी पंक्ति में एक आदमी के ठीक सामने है। M किसी भी पंक्ति के अंत में नहीं है और J के दाहिनी ओर है, जो C के सामने है। K, D के बाईं ओर है, जो M के सामने है। B के ठीक बाईं ओर कौन है?

Six men B, D, C, M, J and K are split in two groups of three each and are made to stand in two rows, such that a man in one row is exactly facing a man in the other row. M is not at the ends of any row and is to the right of J, who is facing C. K is to the left of D, who is facing M. Who is to the immediate left of B?

- (a) M
- (b) J
- (c) D
- (d) डेटा अपर्याप्त है / Data is inadequate

35.	किसी बर्थडे पार्टी में नगण्य मोटाई का वृत्ताक पांच कट लगाए जाएं तो अधिकतम कितने ट्कड्		है, जिसे अलग-अलग टुकड़ों में काटा गया है। यदि हैं?
	5	ake of	negligible thickness, which is to be cut into
	(a) 10	(b)	12
	(c) 16	(d)	20
36.	जाली प्रेषक पते के साथ ईमेल	संदेशों :	के निर्माण को संदर्भित करता है।
	refers to the creation of ema	il messa	ages with a forged sender address.
	(a) स्पूफिंग / Spoofing	(b)	फ़िशिंग / Phishing
	(c) स्पैमिंग / Spamming	(d)	लोजिक बम / Logic bomb
37.	एक अंतर्निहित संख्या जो भंडारण में किसी स्था	न की प	हचान करती है ———— है।
	A built-in number that identifies a locatio	n in a s	torage is ———.
	(a) रजिस्टर / Register	(b)	पता / Address
	(c) रिकार्ड / Record	(d)	बाइट / Byte
38.	उसे — कहा जाता है।		प्रोग्राम को ऑब्जेक्ट प्रोग्राम में परिवर्तित करता है object program for executing later is called कंपाइलर / Compiler प्रोग्रामिंग भाषा / Programming Language
39.	npx@gmail.com में gmail का क्या अर्थ है?		
	What does gmail stands for in npx@gmail.	.com?	47
	(a) डोमेन / Domain	(b)	मेजबान / Host
	(c) उपयोगकर्ता नाम / User Name	(d)	पता / Address
40.	CPU का पूर्ण रूप क्या है?		
	What is the full form of CPU?		
	(a) कंप्यूटर प्रोसेसिंग यूनिट / Computer Pro	cessing	Unit
	(b) सेंट्रल प्रोसेसिंग यूनिट / Central Processi	ing Unit	t was a
	(c) नियंत्रण प्रसंस्करण यूनिट / Control Proc	essing (Jnit
	(d) कंप्यूटर प्राथमिक यूनिट / Computer Pri	mary U	nit

PART - III

- 41. 'प्रकृति के साथ तालमेल बिठाकर सीखना' का प्रचार किया गया
 'Learning in communion with nature' was propagated by
 - (a) स्वामी विवेकानन्द /Swami Vivekananda (b) महात्मा फुले / Mahatma Phule
 - (c) रवीन्द्रनाथ टैगोर / Rabindranath Tagore (d) महात्मा गांधी / Mahatma Gandhi
- 42. किसी समस्या को हल करने या किसी कार्य को पूरा करने के लिए सहकारी शिक्षण के किस दृष्टिकोण में छात्र एक-दूसरे पर निर्भर होते हैं?

In which approach of cooperative learning do students depend on each other to solve a problem or complete a task?

- (a) सोचो-जोड़ी-साझा करो / Think-Pair-Share
- (b) एक साथ क्रमांकित प्रमुख / Numbered Heads Together
- (c) राउंड-रॉबिन / Round-Robin
- (d) जिगसाँ विधि / Jigsaw Method
- 43. लेव वायगोत्स्की के अनुसार, समीपस्थ विकास क्षेत्र (ZPD) है:

According to Lev Vygotsky, the Zone of Proximal Development (ZPD) is the:

- (a) कौशल की श्रृंखला जिसमें एक छात्र स्वतंत्र रूप से महारत हासिल कर सकता है / Range of skills that a student can master independently
- (b) कौशल की शृंखला जिसमें एक छात्र अधिक जानकार अन्य लोगों की मदद से महारत हासिल कर सकता है / Range of skills that a student can master with the help of a more knowledgeable others
- (c) छात्र के विकास के वास्तविक और संभावित स्तरों के बीच अंतर / Difference between a student's actual and potential levels of development
- (d) कौशल की सीमा जो एक छात्र एक विशिष्ट अवधि के भीतर हासिल कर सकता है / Range of skills that a student can master within a specific period of time
- 44. निम्नितिखित में से कौन सा ब्लूम के वर्गीकरण के अनुसार संज्ञानात्मक डोमेन नहीं है? Which of the following is not a cognitive domain as per Bloom's taxonomy?
 - (a) विश्लेषण / Analysis

(b) मूल्यांकन / Evaluation

(c) आत्मबोध / Self actualization

(d) आवेदन / Application

45. संस्कृतिकरण की प्रक्रिया है:

Enculturation is the process of:

- (a) दूसरों के मूल्यों को महत्वपूर्ण अपनाना / Adopting the values of significant others
- (b) अपनी संस्कृति को अपने व्यक्तित्व में आत्मसात करना / Imbibing one's own culture in one's personality
- (c) संस्कृति और परंपराओं को एकीकृत करना / Integrating the culture and traditions
- (d) अन्य संस्कृतियों के रीति-रिवाजों और मूल्यों को स्वीकार करना / Accepting the customs and values of other cultures
- 46. समस्या को हल करने के लिए नई परिस्थिति में सीखी गई सामग्री का उपयोग करने की बच्चे की क्षमता कहलातीं है:

The ability of a child to use learnt material in a new situation to solve the problem is called:

(a) विश्लेषण / Analysis

(b) संश्लेषण / Synthesis

(c) आवेदन / Application

- (d) সান / Knowledge
- 47. फ्रेड फिडलर द्वारा आकस्मिकता सिद्धांत मॉडल का संबंध है :

Contingency Theory Model by Fred Fiedler is concerned with:

- (a) किसी संगठन में एक नेता की ईमानदारी / Integrity of a leader in an organization
- (b) किसी संगठन में एक नेता का दृष्टिकोण / Vision of a leader in an organization
- (c) किसी संगठन में एक नेता की कार्यशैली / Work style of a leader in an organization
- (d) किसी संगठन में एक नेता की प्रभावशीलता / Effectiveness of a leader in an organization
- 48. पर्यवेक्षण का मूल उद्देश्य सहायता करना है

The basic purpose of supervision is to help

- (a) बच्चों के अधिक प्रभावी ढंग से सीखने में / Children learn more effectively
- (b) शिक्षकों के तरीकों में सुधार करने में / Teachers in improving methods
- (c) शिक्षकों के छात्रों को समझने में / Teachers in understanding pupils
- (d) शिक्षकों के छात्रों के साथ व्यवहार में / Teachers in dealing with pupils

49. प्राचार्य का मुख्य उत्तरदायित्व है

The chief responsibility of the principal is

- (a) शिक्षण योजना में नेतृत्व प्रदान करना / Provide leadership in instructional plan
- (b) मार्गदर्शन कार्यक्रम व्यवस्थित और प्रशासित करना / Organize and administer the guidance programmes
- (c) अन्शासन सम्बंधी समस्याओं को संभालना / Handle discipline problems
- (d) स्कूल रिकॉर्ड बनाए रखना / Maintain school records

50. निर्देश के अंत में उपलब्धि का आकलन करना है

To assess achievement at the end of instruction is

- (a) योगात्मक आकलन / Summative Assessment
- (b) रचनात्मक आकलन / Formative Assessment
- (c) नैदानिक आकलन / Diagnostic Assessment
- (d) प्लेसमेंट आकलन / Placement Assessment

51. कक्षा का वातावरण ऐसा होना चाहिए

The classroom environment should be

- (a) सकारात्मक और शिक्षार्थी की आवश्यकता के अनुसार / Positive and as per the need of the
- (b) छात्रों को स्वतंत्रता प्रदान करना / Providing freedom to students
- (c) सहकारी / Co-operative
- (d) उपरोक्त सभी / All of the above

52. कक्षा में सामाजिक-सांस्कृतिक विविधता को बढ़ावा देने के लाभ होने चाहिए

Benefits of promoting socio-cultural diversity in the classroom should be

- (a) विभिन्न संस्कृतियों की आलोचना करना / to be critical of different cultures
- (b) याद रखने के कौशल को बढ़ाने के लिए / to enhance memorization skills
- (c) पूर्वाग्रह और भेदभाव को कम करने के लिए / to reduce prejudice and discrimination
- (d) छात्रों को लेबल करना / to label students

1)11)

- 53. एक शिक्षक को कक्षा प्रबंधन रणनीतियों को नियोजित करना चाहिए जो ध्यान केंद्रित करें A teacher should employ classroom management strategies which focus on
 - (a) औपचारिक नियमों के माध्यम से कक्षा को नियंत्रित करना / controlling the class through formal rules
 - (b) सभी बच्चों से एक समान व्यवहार की अपेक्षा करना / expecting uniform behaviour from all children
 - (c) छात्रों को बिना किसी प्रश्न के सभी नियमों का पालन कराना / making students abide to all rules without questioning
 - (d) आत्मचिंतन के लिए पर्याप्त अवसर देना / giving ample opportunities for self reflection
- 54. एक छात्र किसी शिक्षक की सहायता के बिना किसी समस्या को हल करने का प्रयास करता है। शिक्षक को चाहिए

A student tries to solve a problem without any help from a teacher. The teacher should

- (a) उसे अपने सहकर्मियों से मदद लेने की सलाह दें / Advise him/her to take help from his/her colleagues
- (b) उस पर ध्यान न दें / Pay no attention to him/her
- (c) उसे शिक्षक के निर्देशों का सख्ती से पालन करने की सलाह दें / Advise him/her to strictly follow the teacher's instructions
- (d) उसके व्यक्तिगत प्रयास का मूल्यांकन करें / Appraise his/her individual effort
- 55. निम्नितिखित में से कौन सा संज्ञानात्मक सीखने के परिणाम के उच्च-क्रम का उदाहरण है? Which of the following is an example of higher-order of cognitive learning outcome?
 - (a) तथ्यों और उनके अनुक्रमों को सीखना / Learning of facts and their sequences
 - (b) भूमिकाओं और क्रिया अनुक्रमों को सीखना / Learning of roles and action sequences
 - (c) अवधारणाओं और सारांशन को सीखना / Learning of concepts and abstractions
 - (d) जागरूकता और मूल्यांकन सीखना / Learning of awareness and valuing
- 56. कक्षा में विद्यार्थियों की सीटें बदलने से क्या लाभ है?

What is the benefit of changing seats of students in classroom?

- (a) यह सामाजिक संपर्क और भावनात्मक जुड़ाव को बढ़ावा देता है / It promotes social interaction and emotional bonding
- (b) बच्चे कक्षा में हीन महसूस नहीं करते हैं / Children do not feel inferior in class
- (c) बच्चों को स्वतंत्र और अधिक आत्मविश्वासी बनाता है / Makes children free and more confident
- (d) नए विद्यर्थियों का स्वागत किया जाता है और उन्हें स्कूल और कक्षा की गतिविधियों में शामिल किया जाता है / New comers are welcomed and involved in school and classroom activities

- 57. प्रशासन का वह प्रकार है जिसमें व्यक्ति को स्वयं निर्णय लेने की स्वायत्तता दी जाती है

 The type of administration in which autonomy is given to take individual's own decisions is
 - (a) अन्देशात्मक प्रशासन / Instructional administration
 - (b) लाईसेज़ फ़ेयर प्रशासन / Laissez Faire administration
 - (c) सत्तावादी प्रशासन / Authoritarian administration
 - (d) उपरोक्त में से कोई नहीं / None of the above
- 58. स्थानीय नेताओं के लक्षण हैं:

Traits of local leaders are:

- (a) सकारात्मक सामाजिक दृष्टिकोण / Positive social attitude
- (b) शारीरिक फिटनेस / Physical fitness
- (c) मानसिक क्षमता / Mental ability
- (d) उपरोक्त सभी / All of the above
- 59. एक कक्षा में, यदि छात्र एक प्रोजेक्ट पर समूह में मिलकर काम करते हैं, तो यह किसका उदाहरण है?

 In a class, if students work together in groups on a project, it is an example of
 - (a) व्यवहारिक दृष्टिकोण / Behavioural approach
 - (b) सूचना-प्रसंस्करण दृष्टिकोण / Information processing approach
 - (c) सामाजिक रचनावादी दृष्टिकोण / Social constructivist approach
 - (d) निर्देशात्मक दृष्टिकोण / Instructional approach
- 60. जीन पियाजे के संज्ञानात्मक विकास सिद्धांत के अनुसार, किशोर छात्र विकास के किस चरण में हैं?

 As per the cognitive development theory of Jean Piaget, adolescent students are in which stage of development?
 - (a) संवेदी-मोटर चरण / Sensory-motor stage
 - (b) ठोस परिचालन चरण / Concrete operational stage
 - (c) परिचालन चरण / Operational stage
 - (d) औपचारिक परिचालन चरण / Formal operational stage

61.	कोहर	लंबर्ग के नैतिक विकास सिद्धांत में, चरण 3 स	त्तर 2 प	नर, पारंपरिक नै तिकता का तात्पर्य है:				
	In E	Kohlberg's moral development theory, St	age 3 a	at Level 2, conventional morality refers to:				
	(a)	आज्ञाकारिता और दंड अभिविन्यास / Obedie	ence ar	nd punishment orientation				
	(b)	b) अच्छा लड़का - अच्छी लड़की का रुझान / Good boy - good girl orientation						
	(c)) कानून और व्यवस्था उन्मुखीकरण / Law and order orientation						
	(d)	सामाजिक अनुबंध और व्यक्तिगत अधिकार orientation	अभिवि	ब्नियास / Social contract and individual rights				
62.	शिक्ष	क के विकास का समन्वय, प्रोत्साहन एवं निर्द	देशन क	रने का उद्देश्य है				
8	Co-c	Co-ordinating, stimulating and directing the growth of teacher is the purpose of						
	(a)	निरीक्षण / Inspection	(b)	प्रशासन / Administration				
	(c)	प्रबंधन / Management	(d)	पर्यवेक्षण / Supervision				
63.	निम्	निम्नलिखित में से कौन सी विधि कक्षा में सीखने में छात्रों की अधिकतम भागीदारी सुनिश्चित करती है?						
		ich of the following methods ensures ming?	maxin	num participation of students in classroom				
	(a)	व्याख्यान देना / Lecturing	(b)	चर्चा / Discussion				
	(c)	प्रदर्शन / Demonstration	(d)	पाठ्य पुस्तक विधि / Text book method				
64.	निम्नलिखित में से कौन-से शिक्षण-सीखने की प्रक्रिया में, परतंत्र चर हैं?							
	In t	In teaching learning process, which of the following are dependent variables?						
	(a)	ভার / Students ়	(b)	शिक्षण सिद्धांत / Teaching Principles				
	(c)	शिक्षक / Teacher	(d)	माता-पिता / Parents				
65.	निम	निम्नितिखित में से कौन एडवर्ड थार्नडाइक के "सीखने का नियम" में से एक है?						
	Wh	ich among the following is one of Edwar	d Thor	ndike's "Law of Learning"?				
	(a)	प्रेरणा का नियम / Law of motivation		4				
	(b)	व्यक्तिगत अंतर का नियम / Law of indiv	idual d	lifference				
	(c)	व्यायाम का नियम / Law of exercise						

(d) उपरोक्त में से कोई नहीं / None of the above

66. शिक्षकों को उत्तरदायी बनाने के लिए, सबसे महत्वपूर्ण पहलू है

To make teachers accountable, the most important aspect to be given to them is

- (a) शिक्षण की सामग्री और तरीकों के चयन में स्वतंत्रता / Freedom in the selection of content and methods of teaching
- (b) शिक्षण और परीक्षण में प्रशिक्षण / Training in teaching and examining
- (c) व्यावसायिक विकास के अवसर / Opportunities for professional growth
- (d) उन स्थानों पर स्थानांतरण जहां वे सेवा करना चाहते हैं / Transfer to places where they want to serve
- 67. अल्फ्रेड एल्डर के अनुसार, किसी व्यक्ति में दबाव और तनाव का मुख्य कारण है

 According to Alfred Alder, the primary cause for stress and strain in an individual is
 - (a) हीनता की भावना / The feeling of inferiority
 - (b) स्वयं के ज्ञान की इच्छा / The desire for knowledge of the self
 - (c) यौन आवेग की संत्ष्टि की इच्छा / The desire for gratification of the sex impulse
 - (d) दूसरों के मन की बात जानने की जिज्ञासा / The curiosity to know the mind of others
- 68. संक्षिप्त नाम SUPW का विस्तारित रूप क्या है?

What is the expanded form of the abbreviation SUPW?

- (a) Social Upsurge for Progress and Work
- (b) Scientific Utilisation of Productive Work
- (c) Socially Useful Productive Work
- (d) Solution of Utilitarian Problems of Work
- 69. प्रबंधकीय ग्रिड मॉडल किसके द्वारा विकसित किया गया था?

The Managerial Grid Model was developed by

- (a) हर्सी और ब्लैंचर्ड / Hersey and Blanchard
- (b) फिडलर / Fiedler
- (c) आर. आर. ब्लेक और जे. माउटन / R. R. Blake and J. Mouton
- (d) मैकिन्से / Mckinsey

0

70. बुद्धि का त्रिचातुर्य सिद्धांत किसके द्वारा विकसित किया गया था?				
	The	Triarchic Theory of Intelligence was de	velope	l by
	(a)	हावर्ड गार्डनर / Howard Gardner	(b)	रॉबर्ट जे. स्टर्नबर्ग / Robert J. Sternberg
	(c)	एल. एल. थर्स्टन / L. L. Thurstone	(d)	ई.एल. थार्नडाइक / E. L. Thorndike
71.	शिक्ष	ण-प्राप्ति की प्रक्रिया में पर्यवेक्षण आमतौर पर	र किसवे	न्द्वारा किया जाता है?
	In t	he teaching-learning process, supervisio	n is us	ually carried out by
	(a)	अध्यापक / Teacher	(b)	माता-पिता / Parents
	(c)	प्रिंसिपल / Principal	(d)	समाज / Society
72.	परिच	गलन प्रबंधन सिद्धांत के जनक कौन हैं?		
	Who	o is the father of operational manageme	nt theo	ry?
	(a)	हेनरी फेयोल / Henri Fayol	(b)	फ्रेड्रिक टायलर / Fredrick Tylor
	(c)	टेरी और फ्रेंकलिन / Terry and Franklin	(d)	एल्टन मेओ / Elton Meo
73.	भारत	त में प्रथम शिक्षा आयोग किसके नेतृत्व में स्व	थापित 1	किया गया था?
	The	first education commission in India was	s set uj	o under the leadership of
	(a)	सर काहसल्स वुड / Sir Cahasles Wood	(b)	लॉर्ड मैकाले / Lord Macaulay
	(c)	सर विलियम हंटर / Sir William Hunter	(d)	सर थॉमस मोरे / Sir Thomas More
74.	मान	सिक शान्ति की कौन सी शाखा ज्ञान, उसकी	संरचना,	, पद्धति और वैधता से संबंधित है?
	Wh	ich branch of philosophy deals with know	wledge	, its structure, method and validity?
	(a)	तर्क / Logic	(b)	सौंदर्यशास्त्र / Aesthetics
	(c)	ज्ञान-मीमांसा / Epistemology	(d)	तत्व-मीमांसा / Metaphysics
75.	निम	निलिखित में से कौन सी वह प्रक्रिया है जिस	में व्यवि	त विभिन्न विशिष्ट स्थितियों में सामान्य पहलुओं
	•	वुनियादी संबंधों की पहचान करता है?		•
		ich among the following is the process in tionships in a variety of specific situation		h one identifies the common aspects or basic
	(a)	सारग्रहण / Abstraction	(b)	सामान्यीकरण / Generalization
	(c)	समस्या समाधान / Problem Solving	(d)	तर्क / Reasoning
			4.50	

76.	देश में शिक्षक शिक्षा प्रणाली के योजनाबद्ध एवं समन्वित विकास में शामिल शीर्ष संस्था कौन सी है?
	Which is the apex institution involved in the planned and coordinated development of the teacher education system in the country?

(a) यूजी सी / UGC

(b) एन सी ई आर टी / NCERT

(c) एन सी टी ई / NCTE

(d) एक्स एस ई ई डी / XSEED

77. भारत में पहली जिला-व्यापी ई-साक्षरता परियोजना कौन सी थी? Which was the first district-wide e-literacy project in India?

(a) सी-डी आई टी / C-DIT

- (b) एन आई सी / NIC
- (c) आईटी@स्कूल / IT@SCHOOL
- (d) अक्षय /Akshaya

78. एक समूह में सामाजिक व्यवहार के पैटर्न को मापने की तकनीक को कहा जाता है :

The technique of measurement of the patterns of social behaviour in a group is known as:

- (a) सोशियोग्राम / Sociogram
- (b) इंटरेक्शनल विश्लेषण / Interactional analysis
- (c) सामाजिक दूरी का पैमाना / Social distance scale
- (d) सोशियोमेट्री / Sociometry

79. सतत विकास है

Sustainable development is

- (a) केवल मानवीय जरूरतों पर सोच विचार करना / Giving consideration to human needs only
- (b) वर्तमान पीढ़ी का सुनियोजित विकास करना / Giving well planned development of present generation
- (c) भावी पीढ़ी की आवश्यकताओं को ध्यान में रखते हुए वर्तमान पीढ़ी का सुनियोजित विकास करना / Giving well planned development of present generation considering the needs of the future generation
- (d) केवल आवी पीढ़ी का सुनियोजित विकास करना / Giving well planned development of the future generation only

80. रचनात्मक मूल्यांकन का उद्देश्य है

The purpose of formative evaluation is

- (a) ग्रेड निर्दिष्ट करना / Assigning grades
- (b) पदोन्नति देना / Giving promotion
- (c) सहकर्मी मूल्यांकन / Peer evaluation
- (d) प्रतिक्रिया प्रदान करना / Providing feedback

81. 5 Ω प्रतिरोध के एक चालक तार को उसकी मूल लंबाई को 3 गुना बढ़ाने के लिए खींचा जाता है। इसका नया प्रतिरोध मान क्या है?

A conducting wire of 5 Ω resistance is stretched to increase its original length by 3 times. What is its new resistance value?

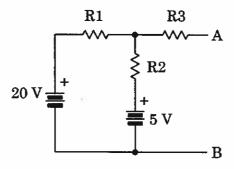
(a) 5 Ω

(b) 15Ω

(c) 30 Ω

- (d) 45Ω
- 82. एक 16 W अवरोधक का रंग कोड पीला, काला, हरा और चाँदी होता है। प्रतिरोधक के माध्यम से प्रवाहित की जा सकने वाली अधिकतम धारा क्या है?

A 16 W resistor has colour code of Yellow, Black, Green, and Silver. What is the maximum current which can be passed through the resistor?


(a) 1 mA

(b) 2 mA

(c) 4 mA

- (d) 5 mA
- 83. दिए गए सर्किट में, $R1=6~\Omega$, $R2=4~\Omega$ और $R3=2~\Omega$ । बैटरियों के आंतरिक प्रतिरोध को अनदेखा करते हुए, A और B टर्मिनलों पर थेवेनिन के वोल्टेज और प्रतिरोध की गणना करें?

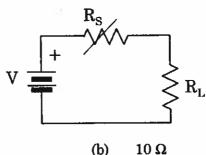
In the given circuit, $R1 = 6 \Omega$, $R2 = 4 \Omega$ and $R3 = 2 \Omega$. Calculate Thevenin's voltage and resistance across A and B terminals, ignoring the internal resistance of the batteries?

(a) 15 V 317 and 2.4Ω

(b) 11 V और / and 4.4Ω

(c) $15 \text{ V} \text{ 31}\text{ } \text{7} \text{ and } 7.3 \Omega$

- (d) $25 \text{ V और / and } 12 \Omega$
- 84. यदि संधारित्र की समानांतर प्लेटों के बीच की दूरी आधी कर दी जाए, तो संधारित्र प्लेटों के बीच संभावित अंतर क्या होगा?


If distance between parallel plates of a capacitor is halved, then what happens to the potential difference between the capacitor plates?

- (a) 2 गुना बढ़ जाता है / Increases by 2 times
- (b) 4 गुना बढ़ जाता है / Increases by 4 times
- (c) घटकर आधा हो जाता है / Decreases to half
- (d) वही रहता है / Remains the same

85.	एक स	ांधारित्र को $2~\mathrm{mA}$ की नियत धारा से चार्ज	करके	5 उसका वोल्टेज 1 s अंतराल में 5 V तक बढ़ाया
	जाता	है। इसका धारिता मान क्या है?		
		age of a capacitor is increased to 5 V in nA. What is its capacitance value?	1 s int	nterval by charging it with a constant current
	(a)	100 μF	(b)	400 μF
	(c)	1 mF	(d)	2 mF
86.	20 μ]	F, 33 μF, 47 μF और 100 μF के चार कैपेर्ी	सेटर 1	100 V आपूर्ति में समानांतर में जुड़े हुए हैं। संग्रहित
		क्या है?		
		capacitors of 20 μ F, 33 μ F, 47 μ F and ly. What is the stored energy?	d 100	μF are connected in parallel across a 100 V
	(a)	$0.2\mathrm{J}$	(b)	0.5 J
	(c)	1 J	(d)	2 J
87.	क्या	है?		ाका प्रेरकत्व 100 μH है, तो इसका प्रेरणिक प्रतिरोध
		inductor carries 1 A DC current. If its tance?	indu	uctance is 100 μH, then what is its inductive
	(a)	0 Ω	(b)	10 Ω
	(c)	50 Ω	(d)	100 Ω
88.			कुंडलि	नेयाँ युग्मित हैं और उनका पारस्परिक प्रेरकत्व 0.2 H
		ो युग्मन का गुणांक क्या है?		a war and a last the second in decomposition of the second control in the second control
		wo coils having self inductance of 0.4 H .2 H then what is coefficient of coupling		2.5 H are coupled and their mutual inductance
	(a)	0.2	(b)	1.45
	(c)	2.7	. (d)) 5
89.	. किर	त आवृत्ति पर 2.5 mH प्रेरक और 1 µF संध	गरित्र र्व	की प्रतिघात समान होगी?
	At	what frequency would a 2.5 mH inducto	or and	d a 1 μF capacitor have the same reactance?
	(a)	318 Hz	(b)) 3.18 kHz
	(c)	318 kHz	(d)) 31.8 MHz
A			20	1499

निम्नलिखित सर्किट में, R_{L} = $20~\Omega$ और R_{S} 5 से $20~\Omega$ तक परिवर्तनशील है। R_{L} में अधिकतम पावर 90. ट्रांसफर में Rs का क्या मूल्य होता है?

In the following circuit, $R_L=20~\Omega$ and R_S is variable from 5 to 20 Ω . What value of R_S results in maximum power transfer across the RL?

- 5Ω (a)
- 15Ω (c)

- (b)
- (d) 20Ω
- निम्नलिखित में से कौन द्वितीयक कोशिका है? 91.

Which of the following is a secondary cell?

- (a) कार्बन जिंक / Carbon Zinc
- पारा / Mercury (b)
- निकेल कैडमियम / Nickel Cadmium
- सिल्वर ऑक्साइड / Silver oxide (d)
- 92. $5~\Omega$ आंतरिक प्रतिरोध वाले चार 1.5~V सेल $30~\Omega$ लोड के साथ शृंखला में जुड़े हुए हैं। सर्किट के माध्यम से धारा प्रवाह क्या है?

Four 1.5 V cells of each having 5 Ω internal resistance are connected in series with a 30 Ω load. What is the current through the circuit?

0.05 A (a)

(b) 0.75 A

0.5 A(c)

- 0.12 A (d)
- 0.7 V ओपन सर्किट वोल्टेज, 0.02 A शॉर्ट सर्किट करंट और 0.5 फिल फैक्टर वाले सौर सेल की अधिकतम 93. आउटप्ट पावर की गणना करें।

Calculate the maximum output power of a solar cell having 0.7 V open circuit voltage, 0.02 A short circuit current and 0.5 fill factor.

(a) 7 mW (b) 14 mW

28 mW (c)

56 mW (d)

A			22	1499				
	(c)	1.11	(d)	1.414				
	(a)	0.636	(b)	0.707				
	W	nat is value of peak factor for an alterna	ating si	nusoidal current or voltage?				
98.		गावर्ती साइनसोइडल धारा या वोल्टेज के लिए						
	(c)	11.5 KVA	(u)	10 IXVA				
	(a)	6 KVA	(b) (d)	15 KVA				
		n ratio of 0.6?	(h)	9 KVA				
			ed ind	uctively for a 15 KVA autotransformer with				
		ानी मात्रा है?						
97.	0.6	के टर्न अनुपात के साथ 15 KVA ऑटोट्रां	सफॉर्मर	के लिए प्रेरणिक रूप से हस्तांतरित कुल शक्ति की				
	(4)			/st				
	(d)	उच्चतर उत्तेजक धारा / Higher exciting	current	t				
	(c)	छोटा आकार / Smaller size	_					
	(b)	बेहतर वोल्टेज विनियमन / Better voltage	e regula	ation				
	(a)	कम नुकसान / Lower losses						
		-winding transformer?		e				
<i>9</i> 0.		-		ect for an autotransformer compared to a				
96.	टो-ट	ाइंडिंग टांसफार्मर की तलना में ऑटोटांसफॉर्म	र के लि	ए निम्नलिखित में से कौन सा कथन सही नहीं है?				
	(c)	250 V	(d)	360 V				
	(a)	125 V	(b)	180 V				
		ne as that of 60 Hz, 300 V supply.		• •				
	•		r a tra	nsformer to keep its magnetization current				
95.		ट्रासफामर क चुबकायकरण घारा का 60 Hz, र्ति वोल्टेज की गणना करें।	, 300 V	जानारा का राजाना बनार रखना का एतर १०० ११८ वर				
0"	112	नंगाध्यों। के नंदकीयस्था श्वास स्रो ८० धन	ያስበ ሂኒ	आपूर्ति के समान बनाए रखने के लिए 50 Hz पर				
	(d)	लौहचुंबकीय < अनुचुंबकीय < प्रतिचुंबकीय /	Ferron	nagnetic < Paramagnetic < Diamagnetic				
	(c)	अनुचुम्बकीय < प्रतिचुम्बकीय < लौहचुम्बर्क	ोय / Pai	ramagnetic < Diamagnetic < Ferromagnetic				
	(b)	प्रतिचुम्बकीय < अनुचुंबकीय < लौहचुंबकीय	/ Diam	agnetic < Paramagnetic < Ferromagnetic				
	(a)	(a) लौहचुंबकीय < प्रतिचुंबकीय < अनुचुंबकीय / Ferromagnetic < Diamagnetic < Paramagnetic						
	Arrange the following in the increasing order of magnetic permeability.							
94.	निम्नलिखित को चुंबकीय पारगम्यता के बढ़ते क्रम में व्यवस्थित करें।							

99.	एक आदर्श धारा स्रोत का आंतरिक प्रतिरोध है:				
	The internal resistance of an ideal current source is:				
	(a)	भार प्रतिरोध के आधे के बराबर / Equal to	half of	load resistance	
	(b)	लोड प्रतिरोध के बराबर / Equal to load rea	sistance		
	(c)	शून्य / Zero			
	(d)	अनंत / Infinite			
100.	AC :	सर्किट में लोड की वास्तविक शक्ति और स्प	ष्ट शकि	त के बीच के अनुपात को कहा जाता है:	
	The	ratio between actual power and appare	ent pow	er of a load in an AC circuit is called:	
	(a)	शक्ति प्रतिक्रियाशील / Power reactive	(b)	गुणवत्ता कारक / Quality factor	
	(c)	शक्ति अनुपात / Power ratio	(d)	पावर फैक्टर / Power factor	
101.		समानांतर अनुनाद परिपथ की अर्ध-शक्ति /IHz है?	बैंडविड्थ	ा क्या है जिसमें Q 100 और अनुनादी आवृत्ति	
		at is half-power bandwidth of a paralle uency of 10 MHz?	l reson	ant circuit which has Q of 100 and resonant	
	(a)	50 kHz	(b)	$100 \ \mathrm{kHz}$	
•	(c)	500 kHz	(d)	1 MHz	
102.	यदि	किसी सर्किट में करंट वोल्टेज को 45° तक	ले जाता	है, तो यह प्रदर्शित होता है:	
	If a	circuit has a current that is leading the	e voltag	e by 45°, then it displays:	
	(a)	शुद्ध क्षमता का प्रतिघात / Pure capacitive	e reacta	nce	
	(b)	शुद्ध आगमनात्मक प्रतिघात / Pure induct	ive reac	tance	
	(c)	प्रतिरोध और धारिता का प्रतिघात / Resista	ance an	d capacitive reactance	
	(d)	प्रतिरोध और प्रेरणिक प्रतिघात / Resistance	e and i	nductive reactance	
103.		RC सर्किट में R = 10 kΩ और C = ो 6.32 V तक चार्ज होने में कितना समय र	•	े हैं। चार्जिंग के लिए लागू वोल्टेज 10 V है।	
		RC circuit has R = 10 k Ω and C = 0.1 g will it take C to charge to 6.32 V?	μF. Tł	ne applied voltage for charging is 10 V. How	
	(a)	0.1 ms	(b)	0.5 ms	
	(c)	1 ms	(d)	2 ms	
A			23	1499	

104. फ़िल्टर की क्रांतिक आवृत्ति को उस बिंदु के रूप	ं परिभाषित किया जात	गा है जिस पर पास बैंड से
०० - क्या साता हा		
प्रतिक्रिया ————— कम हा जाता हा The critical frequency of a filter is defined	the point at which t	he response decreases by
The critical frequency of a filter is desired.		
	10 dB	
(a) 3 dB	40 dB	
(c) 20 dB	इस्से के लिए ए	क उच्च पास RC फ़िल्टर के
$105.~C=1~\mu F$ है तो $\sim 1.6~kHz$ की कट-ऑफ आवृति	364aa1 41501 21 1615	
- \\ 47		
लिए अवरोधक का मान क्या है। What is the value of resistor for a high ~ 1.6 kHz if C = 1 μF?		200 4 000 1
(a) 1) 10	
(1) 100	l) 1000	
(c) 100 106. एक विस्तृत बैंडपास फ़िल्टर के लिए, यदि कट-अं	आवृत्तियाँ क्रमशः 500	Hz और 2 kHz हैं, तो इसकी
कंद्र आवृत्ति (fc) का मूल्यांकन करें? For a wide bandpass filter, if the cut-off	equencies are 500 H	Iz and 2 kHz respectively,
For a wide bandpass filter, if the cut-on evaluate its centre frequency (fc)?		x ÷
(a) $f_C = 750 \text{ Hz}$	$\mathbf{f}_{\mathrm{C}} = 1000 \mathrm{Hz}$	
(c) $f_C = 1250 \text{ Hz}$	$(d) f_C = 1500 Hz$	
107. एक समानांतर LC सर्किट अपनी अनुनादी आवृ	मे ऊपर की आवस्तिये	के लिए ————— लोड
107. एक समानातर LC सांकट अपना जनुनादा उगन्		H.
के रूप में ट्यवहार करता है। A parallel LC circuit behaves as ———	load for the fre	quencies above its resonant
A parallel LC circuit behaves as ———	1044 101	=
frequency.	(b) धारिता / Capac	itive
(a) प्रतिरोधी / Resistive	``	होई नहीं / None of the above
(c) प्रेरणिक / Inductive	(d) उपराक्त म स	1114 31611 2 3333
108. निम्नलिखित में से किसमें प्रतिरोध का सकारात	तापमान गुणांक है?	
Which of the following has a positive tem	ature coefficient of re	esistance?
	(b) सिलिकॉन / Silli	con
(a) कार्बन / Carbon	(d) अभक / Mica	
(c) तांबा / Copper		. 4
109. निम्नलिखित मानों में से, अर्धचालकों में निषि	ऊर्जा बैंड अंतराल लगभग	हो सकता है: in comiconductors can be
Among the following values, the forb	den energy band ga	th itt semiconasson
approximately:	. **	
(a) 0 eV		
(c) 6 eV	(d) 10 eV	
	24	1499

110. n-प्रकार का अर्धचालक है:

The n-type semiconductor is:

- (a) सकारात्मक रूप से प्रभारित किया गया / Positively charged
- (b) नकारात्मक रूप से प्रभारित किया गया / Negatively charged
- (c) विद्युत रूप से तटस्थ / Electrically Neutral
- (d) डोपिंग के आधार पर सकारात्मक या नकारात्मक प्रभारित / Positively or negatively charged depending on the doping
- 111. निम्नलिखित में से कौन त्रिसंयोजी अश्दि है?

Which of the following is a trivalent impurity?

(a) आर्सेनिक / Arsenic

(b) बिस्मथ / Bismuth

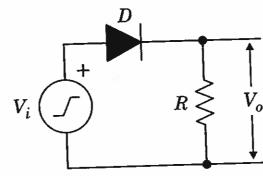
(c) बोरोन / Boron

- (d) फॉस्फोरस / Phosphorous
- 112. फॉरवर्ड बायस्ड PN जंक्शन में धारा गति मुख्य रूप से निम्न के कारण होता है:

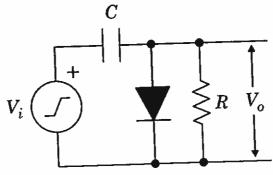
Current flow in forward biased PN junction is predominantly due to:

- (a) आवेश वाहकों का बहाव / Drifting of charge carriers
- (b) आवेश वाहकों का प्रसार / Diffusion of charge carriers
- (c) आवेश वाहकों का बहाव और प्रसार / Drifting and diffusion of charge carriers
- (d) उपरोक्त सभी / All of the above
- 113. यदि PN जंक्शन डायोड पर रिवर्स बायस लगाया जाता है तो फर्मी ऊर्जा स्तर का क्या होता है?
 What happens to the Fermi energy level if a reverse bias is applied to a PN junction diode?
 - (a) P-प्रकार के लिए बढ़ता है और N-प्रकार के लिए घटता है / Increases for P-type and decreases for N-type
 - (b) P-प्रकार के लिए घटता है और N-प्रकार के लिए बढ़ता है / Decreases for P-type and increases for N-type
 - (c) अपरिवर्तित रहता है / Remains unchanged
 - (d) P-प्रकार और N-प्रकार दोनों के लिए वृद्धि / Increases for both P-type and N-type
- 114. फॉरवर्ड बायस्ड PN डायोड के लिए कौन सा कथन सही है?

Which of the statements is correct for the forward biased PN diode?


- (a) बड़ी धारा प्रवाह / Large current flows
- (b) संयोजन कम प्रतिरोध प्रदान करता है / The junction offers low resistance
- (c) क्षीणता परत कम हो जाती है / Depletion layer is reduced
- (d) उपरोक्त सभी / All of the above

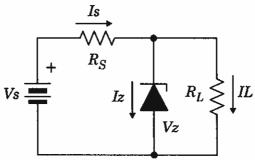
- 115. निम्नलिखित में से कौन AC सिग्नल में DC स्तर जोइता है? Which of the following adds a DC level to an AC signal?
 - (a) एम्पलीफायर / Amplifier


(b) क्लिपर / Clipper

(c) क्लैंपर / Clamper

- (d) दिष्टकारी / Rectifier
- 116. निम्नलिखित परिपथ एक ———— है। The following circuit is a

- (a) समानांतर सकारात्मक क्लिपर / Parallel Positive Clipper
- (b) समानांतर नकारात्मक क्लिपर / Parallel Negative Clipper
- (c) श्रृंखला सकारात्मक क्लिपर / Series Positive Clipper
- (d) श्रृंखला नकारात्मक क्लिपर / Series Negative Clipper
- 117. नीचे दिए गए सर्किट में V_o क्या है, यदि V_i –5 V से +5 V के बीच है? What is V_o in the circuit given below, if V_i lies between –5 V to +5 V?


- (a) 0 से +5 V तक भिन्न होता है / Varies from 0 to +5 V
- (b) 0 से +10 V तक भिन्न होता है / Varies from 0 to +10 V
- (c) 0 से -5 V तक भिन्न होता है / Varies from 0 to -5 V
- (d) 0 से -10~V तक भिन्न होता है / Varies from 0 to -10~V

613

1

118. निम्नितिखित सर्किट में, जेनर ब्रेकडाउन वोल्टेज, $Vz=5~{\rm V},~R_S=500~\Omega,~R_L=1000~\Omega$ और Vs~10~V से 15~V तक भिन्न होता है। जेनर डायोड करंट, Iz के न्यूनतम और अधिकतम मान क्या हैं?

In the following circuit, Zener breakdown voltage, Vz = 5 V, $R_S = 500 \Omega$, $R_L = 1000 \Omega$ and Vs varies from 10 V to 15 V. What are the minimum and maximum values of the Zener diode current, Iz?

(a) 5 mA 311 and 10 mA

(b) 10 mA और / and 15 mA

(c) 5 mA और / and 15 mA

- (d) 10 mA और / and 20 mA
- 119. निम्नितिखित में से किस डायोड का उपयोग ट्यून्ड सर्किट में किया जाता है? Which of the following diode is used in tuned circuits?
 - (a) PIN डायोड / PIN diode
- (b) स्टेप रिकवरी डायोड / Step recovery diode
- (c) वैक्टर डायोड / Varactor diode
- (d) जेनर डायोड / Zener diode
- 120. निम्निलिखित में से किस डायोड का उपयोग फोटो डिटेक्टर के रूप में किया जाता है? Which of the following diode is used as a photo detector?
 - (a) PIN डायोड / PIN diode

- (b) शॉट्की डायोड / Schottky diode
- (c) तनल डायोड / Tunnel diode
- (d) जेनर डायोड / Zener diode
- 121. एक फोटोडायोड से बिना किसी रोशनी के प्रवाहित होने वाली धारा को कहा जाता है: The current flows through a photodiode under no illumination is called:
 - (a) बायस करंट / Bias current
- (b) डार्क करंट / Dark current
- (c) डिटेक्शन करंट / Detection current
- (d) संतृप्ति धारा / Saturation current
- 122. एक फोटोडायोड का सक्रिय क्षेत्रफल 4 mm² और संवेदनशीलता 0.5 A/W है। 20 W/m² की आपतित प्रकाश तीव्रता के लिए फोटोडायोड का आउटप्ट क्या है?

A photodiode has an active area of 4 mm² and sensitivity of 0.5 A/W. What is the output of the photodiode for an incident light intensity of 20 W/m²?

(a) $5 \mu A$

(b) 40 mA

(c) 20 mA

(d) $40 \mu A$

123. LE	D द्व	ारा उत्सर्जित	प्रकाश का रंग वि	नेर्भर करता है:		-	
Col	lour (of light emit	tted by LED de	pends on:			
(a)	डोर्ब	पेंग स्तर / Do	oping level				
(b)	फॉ	रवर्ड बायस वं	ोल्टेज / Forward	l bias voltage			
(c)	रि	वर्स बायस वो	ल्टेज / Reverse l	oias voltage			
(d)) ЭТ	र्धचालक पदार्थ	र्प / Semiconduc	tor material			
124 ਦ	त आ	दुर्श विनियमि	त विद्युत आपूर्ति	में वोल्टेज विनियम	म होता है —	I	
Δ,	n ide	al regulated	l power supply	has voltage regula	ation of		
) \ 0		•	(b)	50 %		
(c	_	0 %		(d)	100 %	111	
		- \	का दसपट तोल्टेड	ਜ 220 Sin(100t) हੈ	। इसके आउटप्	ट का औसत मूल्य	क्या है?
125. हा	फ-व	र राक्टफायर	116 arro most	ifier is 220 Sin(10	00t). What is t	, he average value	of its output?
			naii-wave rect	(b)	110 V		
•		70 V 140 V		(d)	220 V	1	
_	•			- 4			
126. f	ब्रेज प्र	कार के फुल-	वेव रेक्टिफायर व	ना रिपल फैक्टर है	•		, ° ,
1	Rippl	e factor of a	bridge type fu	ll-wave rectifier is	3		
((a)	0		(b)	0.48		
	` '	1.1		(d)	1.21		
197	एक प	कल-वेव 'रेक्टि'	फाइड करंट का	RMS मान 20 A है	। हाफ-वेव रेकि	टफिकेशन के लिए	इसका मान होगा
				(1)			
	The	RMS value	of a full-wave	rectified current	is 20 A. Its	value for half-wa	ave rectification
		ld be					13
	(a)	10 A		(b)	14.14 A		
	(c)	20 A		(d)	28.28 A		•
		~~ * 1	` क्रिकानम् (SC	R) में कितने PN उ	नंक्शन होते हैं?		13 B
128.	ासार	कान कट्राल्ड	सायद्यमयर (५००	con Controlled Re	ectifier (SCR)	has?	
	Hov	v many PN	junctions a Sin		_		
	(a)	1		(b)			
	(c)	3		(u	, -		1 404
A				28	3		. 1499

ŧ

129. निम्नलिखित में से कौन सा स्विच के रूप में SCR का अनुकूल परिस्थिति नहीं है?

Which of the following is not an advantage of SCR as a switch?

- (a) यह बड़ी मात्रा में शक्ति को संभाल सकता है / It can handle large power
- (b) यह शोर रहित संचालन देता है / It gives noiseless operation
- (c) इसका उपयोग उच्च स्विचिंग गति के साथ किया जा सकता है / It can be used with high switching speeds
- (d) ऑपरेशन हार्मोनिक्स उत्पन्न नहीं करता है / Operation does not produce harmonics
- 130. निम्नलिखित में से कौन सा कथन कॉमन-कलेक्टर ट्रांजिस्टर सर्किट कॉन्फ़िगरेशन के लिए सही है?

Which of the following statement is correct for common-collector transistor circuit configuration?

- (a) उच्च इनपुट प्रतिबाधा, उच्च धारा लाभ और 0° चरण बदलाव / High input impedance, high current gain and 0° phase shift
- (b) उच्च आउटपुट प्रतिबाधा, उच्च धारा लाभ और कम वोल्टेज लाभ / High output impedance, high current gain and low voltage gain
- (c) उच्च इनपुट प्रतिबाधा, कम धारा लाभ और उच्च वोल्टेज लाभ / High input impedance, low current gain and high voltage gain
- (d) उच्च वोल्टेज लाभ, उच्च धारा लाभ और 180° चरण बदलाव / High voltage gain, high current gain and 180° phase shift
- 131. सर्वोत्तम ऑपरेटिंग बिंदु स्थिरता प्रदान करने वाला बायस सर्किट है:

The bias circuit that provides the best operating point stability is:

- (a) बेस प्रतिरोधी बयास / Base resistor bias
- (b) कलेक्टर फीडबैक बयास / Collector feedback bias
- (c) निश्चित बयास / Fixed bias
- (d) वोल्टेज विभक्त बयास / Voltage divider bias
- 132. इनपुट प्रतिबाधा $= 1 \text{ k}\Omega$, वोल्टेज लाभ = 100 और पावर लाभ = 5000 है एक सामान्य-उत्सर्जक ट्रांजिस्टर एम्पलीफायर का आउटपुट प्रतिबाधा ज्ञात करें।

Find the output impedance of a common-emitter transistor amplifier which has input impedance = $1 \text{ k}\Omega$, voltage gain = 100 and power gain = 5000?

(a) 500Ω

(b) $1 \text{ k}\Omega$

(c) $2 k\Omega$

(d) 5Ω

			_	- 		
133.		खित में से कौन सा कथन डार्लिंगटन जोड़ी के				
	Which of the following is not correct statement for Darlington pair?					
		च्च इनपुट प्रतिबाधा / High input impedanc				
	(b) व	न्म आउटपुट प्रतिबाधा / Low output impeda	nce			
	(c) 3	च्च धारा लाभ / High current gain		27		
2	(d) 3	ज्य स्विचिंग गति / High switching speed				
134.	डनपट	पावर = 5 µW और पावर गेन = 60 dB वाले	एम्पर	ालीफायर की आउटपुट पावर क्या है?		
	What	is the output power of an amplifier with	inpu	ut power = $5 \mu W$ and power gain = $60 dB$?	1	
			b)	5 mW		
	(c) :	1 W	d)	5 W		
		0.4	ਜ਼ਾ ਨਾ	नाभ = 600 और बंद-लूप लाभ = 150 है। स	मान ^{्र}	
135.	्एक न	कारात्मक फाडबक एम्पलाफायर का जायकार	ኒግ ‹ግ 160	तक बढ़ाने के लिए कितने ओपन-लूप लाभ	की	
			100	Will state of the		
		पकता है?	റന	gain = 600 and closed-loop gain = 1	150.	
	A ne What	egative feedback ampliner has open to t open-loop gain is required to increase i	ts clo	osed-loop gain to 160 with the same feedb	ack	
	facto	r?		800		
		000	(b) (d)	1000		
	(c)	960	()	2.5		
136	. धारा	शंट फीडबैक एम्पलीफायर के लक्षण:				
100	Char	racteristics of current shunt feedback an	plifie	ier:		
	(a)	यह इनपुट प्रतिरोध बढ़ाता है और आउटपुट	प्रतिरो	रोध कम करता है / It increases input resist	ance	
	ζ-,	and decreases output resistance		197		
	(b)	यह इनपुट प्रतिरोध को कम करता है और	आउ	उटपुट प्रतिरोध को बढ़ाता है / It decreases i	nput	
		resistance and increases output resista	nce	- heth innut regist	tance	
	(c)		प्रामा व	को बढ़ाता है / It increases both input resist	Julico	
		and output resistance	ा टोर्न	नों को कम करता है / It decreases both	input	
	(d)	यह इनपुट प्रातराध आर आउटपुट प्रातराज्य resistance and output resistance	ı Qıv	off the fact that the fact the fact that the fact that the fact that the fact that the		
	•	resistance and output resistance				
13	7. निम	निलखित में से किसकी त्वचीय की गहराई सब	क्से अ	अधिक है (सभी आयाम समान हैं)?		
	Wh	ich of the following has the highest skin	dept	th (all dimensions being equal)?		
	(a)	एल्यूमिनियम / Aluminium	(b)			
	(c)	चांदी / Silver	(d)) तांबा / Copper		
			30)	1499	

138.	88. P -चैनल JFET के लिए, यदि सकारात्मक गेट-सोर्स वोल्टेज बढ़ता है तो ——————।								
	For	For a P-channel JFET, if positive Gate-Source voltage increases then							
	(a)	a) अपवाह धारा कम हो जाती है / Drain current decreases							
	(b)	अपवाह धारा बढ़ जाती है / Drain current increases							
	(c)	अपवाह धारा स्थिर रहती है / Drain current remains constant							
	(d)	अपवाह धारा, ड्रेन टू सोर्स संतृप्ति करंट के बराबर होता है / Drain current equals drain to source saturation current							
139.	निम्न	ालिखित में से कौन शिथिल दोलक है?							
	Whi	ch of the following is a relaxation oscillator?							
	(a)	क्लैप दोलक / Clapp oscillator							
	(b)	मल्टीवाइब्रेटर / Multivibrator							
	(c)	चरण-शिफ्ट दोलक / Phase-shift oscillator							
	(d)	वीन ब्रिज दोलक / Wien bridge oscillator							
140.	क्रिस्ट	टल ऑसिलेटर की उच्च आवृत्ति स्थिरता किसके कारण होती है?							
	High	igh frequency stability of crystal oscillator is due to:							
	(a)	अधिक लूप लाभ / More loop gain (b) छोटा प्रेरण / Small inductance .							
	(c)	बड़ा प्रतिरोध / Large resistance (d) उच्च Q / High Q							
141.	निम्न	निम्नलिखित में से किसे ट्रिगर पल्स जनरेटर माना जाता है?							
	Which of the following is considered as a triggered pulse generator?								
	(a) एस्टेबल मल्टीवाइब्रेटर / Astable multivibrator								
	(b)	मोनोस्टेबल मल्टीवाइब्रेटर / Monostable multivibrator							
	(c)	हार्टले ऑसिलेटर / Hartley oscillator							
	(d)	पियर्स ऑसिलेटर / Pierce oscillator							
142.	एक :	एक आयाम संग्राहक सिग्नल की वाहक आवृत्ति 20 kHz है। निचला साइडबैंड 18 kHz पर प्रसारित होता							
	है। A	M सिग्नल संचारित करने के लिए आवश्यक बैंडविड्थ है ———————————————————————————————————							
	An a	amplitude modulated signal has carrier frequency of 20 kHz. The lower sideband is smitted at 18 kHz. The bandwidth required for the AM signal to transmit is							
	(a)	1 kHz (b) 2 kHz							
	(c)	4 kHz (d) 8 kHz							

143.	जब 4	10% मॉड्यूलेशन होता है और वाहक शक्ति	40 W	होती है तो 3	गयाम मॉड्यूले	टेड सिग्नल के प्रत्ये	क
	साइड	वैंड में कितनी शक्ति होती है?					
	How wher	much power is contained in each of a there is 40% modulation and the carri	the sider the sider	lebands of er is 40 W?	an amplitud	e modulated sign	al
		1.6 W	(b)	3.2 W			
	(c)	6.4 W	(d)	20 W			
144.	निम्न	लिखित में से कौन सा कथन आवृत्ति मॉड्यू	लेशन वे	ह संबंध में ग	लत है?		
		ch one of the following statements is inc				dulation?	
	(a)	इसकी बैंडविड्थ आयाम मॉड्यूलेशन से आर्ष modulation	धेक हैं /	Its bandwi	dth is great	er that of amplitu	de
	(p),	इसका मॉड्यूलेशन इंडेक्स हमेशा 1 से कम	होता है	/ Its modula	ition index is	always less than	1
	(c)	इसमें बड़ी संख्या में साइडबैंड हैं / It has la	rge nui	mber of side	bands		
	(d)	इसमें आयाम मॉड्यूलेशन की तुलना में बे than that of amplitude modulation	हतर श	ोर प्रतिरक्षा	t It has be	etter noise immun	ity
145.	फ्रीक	वेंसी मॉड्यूलेटेड सिग्नल 6 Cos (3140 t) + 1	5 Sin (1570 t) ਸੇਂ ਬੈ	तियर फ़्रीक्वेंर्स	ो मान क्या है?	
	Wh				frequency .		nal
	(a)	250 Hz	(b)	$500~\mathrm{Hz}$			
	(c)	1570 Hz	(d)	3140 Hz			
146	. एक	एकीकृत परिपथ में ऑक्साइड परत (SiO2)	का उपर	योग किसके वि	लेए किया जात	ग है?	
	The	e oxide layer (SiO2) in an integrated circ	cuit is 1	used for:			
	(a)	डोपिंग / Doping	(b)		ान / Intercon	nection	
	(c)	वियोजन / Isolation	(d)	उपरोक्त व	में से कोई नहीं	/ None of the abov	e
147	. नि <i>व</i>	निलिखित में से कौन आदर्श सक्रियात्मक प्रव	र्धिक की	विशेषता नर्ह	ों है?		
	W	nich of the following is not a characteris	stic of i	deal operati	onal amplifi	er?	
	(a)						
	(b)	अनंत स्लीव दर / Infinite slew rate					
	(c)	अनंत सी एम आर आर / Infinite CMR	R				

1499

(d) अनंत बैंडविड्थ / Infinite bandwidth

148.	एक नॉ	न-इनवर्टिंग एम्पलीफायर जिसमें कुल आउ	टपुट व	ोल्टेज को ऑपरेशनल एम्पलीफायर के इनवर्टिंग				
	इनपुट में वापस फीड किया जाता है, उसे ————— कहा जाता है।							
		A non-inverting amplifier in which total output voltage is fed back to the inverting input of the operational amplifier is called						
	(a) इंटीग्रेटर / Integrator							
(b) लॉगरिदमिक एम्पलीफायर / Logarithmic amplifier								
	(c) वि	भेदक / Differentiator						
	(d) वो	ल्टेज अनुयायी / Voltage follower						
149.		न सॉट्र्थ वेव को एक विभेदक के इनपुट के ——— मिलता है।	रूप में	लागू करते हैं तो हमें इसके आउटपुट के रूप में				
	If we a	pply sawtooth wave as input to a diffe	rentiat	tor then we get as its output.				
	(a) रैंप	T/Ramp	(b)	आयताकार / Rectangular				
	(c) स	ाइनसोइडल / Sinusoidal	(d)	त्रिकोणीय / Triangular				
15 0.		= $200~{ m k}\Omega$ और ${ m C}=1~\mu{ m F}$ वाले इंटीग्रेटर आउटपुट वोल्टेज क्या है?	पर 1	V इनपुट वोल्टेज लगाया जाता है तो 1s के बाद				
		input voltage is applied to an integra put voltage after 1 s?	tor wit	th R = 200 k Ω and C = 1 μ F then what is				
	(a) -	1 V	(b)	–2 V				
	(c) -{	5 V	(d)	-10 V				
151.	दशमलव	ा संख्या 68 का 2 का पूरक रूप है:		w				
	The 2's	s complement form of the decimal num	ber 68	is:				
	(a) 10	0111100	(b)	01000100				
8	(c) 10	0111011	(d)	उपरोक्त में से कोई नहीं / None of the above				
152.	हेक्साडेरि	सेमल संख्या 6B43 का अष्टक समतुल्य है	} :					
		tal equivalent of the hexadecimal num		343 is:				
		01371	(b)	30556				
	(c) 6	5503	(d)	173103				
153.	बाइनरी	संख्या 11001.101 का दशमलव समतुल्य	है :					
	The de	cimal equivalent of the binary numbe	r 1100	1.101 is:				
	(a) 28	5.125	(b)	25.5				
	(c) 2	5.6	(d)	25.625				

154.	3-डना	पुट NOR गेट के लिए आउटपुट 1 के सार्थ	र कितनी ि	स्थितियों संभव हैं?	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	How	many number of states with output 1	l are possi	ble for a 3-input NOR gate?	
		0	(b)	1	
	(c)	3	(d)	7	
155.	होती	है?		ND गेट और 2-इनपुट OR गेट की आवश्यक	ता
	Нож	many 2-input AND gates and 2-inpu	it OR gate	s are required to realize BD+AB+C?	
	(a)	2, 2	(b)	2, 3	
	(c)	3, 2	(d)	3, 3	
156.	हाफ	सबट्रैक्टर सर्किट को लागू करने के लिए र्	केतने 2-इन	ापुट NAND गेट की आवश्यकता होती है?	
	Hov	v many 2-input NAND gates are requ	ired to im	plement a half subtractor circuit?	
	(a)	3	(b)	5	:5
	(c)	6	(d)	9	
157	त्रति	यन बीजगणित में, डी मॉर्गन का नियम व	म्हता है कि		
107		Boolean algebra, De Morgan's law sta			
	(a)	(A+B)' = A'+B'	(b)	A'+B'=A'B'	
	(c)	(AB)' = A'B'	(d)	(A+B)' = A'B'	
158		og _ž 5)का मान है			
100		e value of $8(\log_2 5)$ is			
	(a)		(b)	96	
	(c)	125	(d)	243	
4 = 4		ती गति के क्रम में CMOS, ECL, RTL	और TTL	तर्क वर्गों को व्यवस्थित करें।	
15). ¶Ģ ^-	range CMOS, ECL, RTL and TTL log	ric familie	s in the order of increasing speed.	
		CALCOC TICH DOWN OWN	(b)	ECL, RTL, CMOS, TTL	
	(a)	TO CO TO THE PART OF THE PART	(d)	RTL, CMOS, TTL, ECL	
	(c)	हे वर्गों की योग्यता का आंकड़ा ———	•		
16	0. त	ह वंगा का याग्यता का आकड़ा ————	tivan hv tl	ne product of	
	Tl	ne figure of merit of a logic family is			
	(a) फैन-आउट और प्रसार विलंब समय/F	an-out an	d propagation delay since	
	(b) बैंडविड्थ और गैन / Bandwidth and	gain		
	(c) शोर मार्जिन और शक्ति अपव्यय / No	ise margi	n and power dissipation	
	(d	्रं — और वर्षित आख्य	य / Propa	gation delay time and power dissipation	
A			34	,	1499

161.	निम्	न और उच्च शोर मार्जिन एक विशेष तर्क क	र्ग में V	$_{ m OH}$ = 3.5 V, $_{ m Vol}$ = 0.4 V, $_{ m ViH}$ = 2 V 311 $_{ m ViL}$ =
		V है। मान होंगे		
	A pa	articular logic family has $V_{OH} = 3.5 \text{ V}$, variouse margin values will be	$V_{OL} = 0$.4 V, $V_{IH} = 2$ V and $V_{IL} = 0.8$ V. The low and
	(a)	0.2 V, 0.75 V	(b)	0.4 V, 1.5 V
	(c)	1.2 V, 3.1 V	(d)	1.6 V, 2.7 V
162.	निम्ब	निलिखित में से कौन सा एक गैर-संपर्क प्रकार	का सेंस	ार है?
	Whi	ch of the following is a non-contact type	senso	r?
	(a)	अल्ट्रासोनिक सेंसर / Ultrasonic sensor	(b)	तनाव गेज / Strain gauge
	(c)	पोर्टेशियोमीटर / Potentiometer	(d)	एलवीडीटी / LVDT
163.	निम्ब	निलेखित में से रैखिक गित को मापने के लिए	र किसव	ग उपयोग किया जाता है?
	Whi	ch of the following is used to measure li	inear n	notion?
	(a)	लोड सेल / Load cell	(b)	एलवीडीटी / LVDT
	(c)	बैरोमीटर / Barometer	(d)	थर्मोकपल / Thermocouple
164.	थर्मा	कपल किस सिद्धांत पर आधारित है?		
	The	thermocouple is based on the principle	of	
	(a)	फैराडे लाँ / Faraday law	(b)	गॉस लाँ / Gauss law
	(c)	लेन्ज़ लॉं / Lenz law	(d)	सीबेक प्रभाव / Seebeck effect
165.	निम्न	निलिखित में से थर्मिस्टर का उपयोग करने क	ा नुकसा	न क्या है?
	Whi	ch of the following is a disadvantage of	using t	hermistor?
	(a)	महँगा / Expensive		
	(b)	सीमित तापमान सीमा / Limited temperat	ture ra	nge
	(c)	सटीक नहीं / Not accurate		
	(d)	जाँच करना कठिन हैं / Difficult to calibra	te	
166.	CRO) का उपयोगमापने के लिए	र किया	जाता है।
	A C	RO is used for measuring		•
	(a)	आवृत्ति / Frequency	(b)	चरण / Phase
	(c)	वोल्टेज / Voltage	(d)	उपरोक्त सभी / All of the above
A			35	1499

167.	वोल्ट	मीटर में प्रतिरोध होना चाहि	रए।	
	A vo	oltmeter should have ———— resi	stance	
	(a)	बहुत कम / Very low	(b)	बहुत ऊँचा / Very high
	(c)	शून्य / Zero	(d)	उपरोक्त में से कोई नहीं / None of the above
168.	एक	एमीटर को सर्किट तत्व के साथ ———	— में	जोड़ा जाता है जिसकी धारा को मापना है।
		ammeter is connected in ———————————————————————————————————	with	the circuit element whose current is to be
	(a)	शृंखला / Series	(b)	समानांतर / Parallel
	(c)	श्रृंखला या समानांतर / Series or Parallel	(d)	उपरोक्त में से कोई नहीं / None of the above
169.	4½	अंक वाले वोल्टमीटर का रेजोल्यूशन होता है -	······	I
	A 4	½ digit voltmeter has the resolution of		10
	(a)	पूरी रेंज का 0.001% / 0.001% of the full	range	
	(b)	पूरी रेंज का 0.005% / 0.005% of the full	range	
	(c)	पूरी रेंज का 0.01% / 0.01% of the full re	nge	
	(d)	पूरी रेंज का 0.05% / 0.05% of the full ra	ange	
170.	एक	मल्टीमीटर की संवेदनशीलता जो $50~\mu\mathrm{A}$ मीव	टर की	गति का उपयोग करती है ———— होती है।
		e sensitivity of a multimeter that uses a		
	(a)	1 kΩ/V	(b)	10 kΩ/V
	(c)	20 kΩ/V	(d)	50 kΩ/V
171.		3	क्या है	जब मीटर की गति को उसके पूर्ण-स्केल करंट के
		μA के लिए रेट किया गया है?	4	the 5 M man as when the motor movement is
		ed for 100 μ A of its full-scale current?	ter on	the 5 V range when the meter movement is
	(a)	10 kΩ	(b)	$50~\mathrm{k}\Omega$
	(c)	$100~\mathrm{k}\Omega$	(d)	500 kΩ
172	. निम	नितिखित में से ओम के नियम के ग्राफिकल	प्रतिनि	धेत्व का ढाल किससे मेल खाता है?
	The	e slope of graphical representation of oh	m's la	w corresponds to which one of the following
	(a)	प्रतिरोध / Resistance	(b)	प्रतिबाधा / Impedance
	(c)	धारिता / Capacitance	(d)	प्रेरणिक प्रतिघात / Inductive reactance
A			36	1499

173.	73. क्या हम BJT वाले सर्किट पर नॉर्टन की प्रमेय का उपयोग कर सकते हैं?				
	Can we use Norton's theorem on a circuit containing a BJT?				
	(a)	हाँ / Yes			
	(b)	नहीं / No			
	(c)	BJT पर निर्भर करता है / Depends on the BJ	Т		
	(d)	अपर्याप्त डेटा प्रदान किया गया / Insufficient d	.ata	a provided	
174.	Q व	कारक बढ़ने पर संधारित्र के वोल्टेज पर क्या प्रभाव	पः	हेगा?	
	Wha	nat happens to the voltage across the capacito	or v	when the Q factor increases?	
	(a)	बद्ध जाता है / Increases (b))	घट जाता है / Decreases	
	(c)	वही रहता है / Remains the same (d))	शून्य हो जाता है / Becomes zero	
L75.	फोटो	प्रेडायोड और सोलर सेल में क्या अंतर है?			
	Wha	nat is the difference between Photodiode and	So	lar cell?	
	(a)	फोटोडायोड में कोई बाहरी बायस नहीं / No Exter	rna	al Bias in Photodiode	
	(b)	सौर सेल में कोई बाहरी बायस नहीं / No Extern	ıal	Bias in Solar cell	
	(c)	फोटोडायोड में बड़ा सतह क्षेत्रफल / Larger surfa	ıce	area in photodiode	
	(d)	कोई अंतर नहीं / No difference			
176.	प्राथि	मिक घुमावों 400, द्वितोंयक घुमावों 100 वाले ट्रांर	सफ	ार्मर के लिए, यदि प्राथमिक से 20A धारा प्रवाहित	
		रही है, तो हमें मिलेगा			
	For a transformer with primary turns 400, secondary turns 100, if 20A current is flowing through primary, we will get				
	(a)	माध्यमिक स्तर पर 800A / 800A at secondary	y		
	(b)	माध्यमिक स्तर पर 40A / 40A at secondary			
	(c)	माध्यमिक स्तर पर 80A / 80A at secondary		50	
	(d)	माध्यमिक स्तर पर 5A / 5A at secondary			

177.	समय स्थिरांक प्रतिक्रिया की अधिकतम वृद्धि के लिए लिया गया समय है?					
	Time constant is the time taken for response to rise				of maximum value.	
	(a)	100%	(b)	90%		
	(c)	63.2%	(d)	68.3%		
178.	LED	LED का बायसिंग क्या होना चाहिए?				
What should be the biasing of the LED?						
	(a)	अग्रिम बायस / Forward bias				
	(b)	विपरीत बायस / Reverse bias				
	(c) ,	c) 、रिवर्स बायस की तुलना में फॉरवर्ड बायस / Forward bias than Reverse bias				
	(d)	किसी बायसिंग की आवश्यकता नहीं है / No	biasin	g required		
179.	थर्मल	थर्मल रनवे तब होता है जब				
	Thermal runaway occurs when					
	(a)	(a) कलेक्टर विपरीत बायस्ड हैं / Collector is reverse biased				
	(b)	(b) ट्रांजिस्टर बायस्ड नहीं हैं / Transistor is not biased				
	(c)	उत्सर्जन अग्र बायस्ड है / Emitter is forwa	ard bia	sed		
	(d)	जंक्शन कैपेसिटेंस अधिक है / Junction cap	pacitar	nce is high	** ,	
180.	AM	स्पेक्ट्रम में शामिल हैं				
The AM spectrum consists of						
	(a)	वाहक आवृत्ति / Carrier frequency				
	(b)	ऊपरी तरफ बैंड आवृत्ति / Upper side ban	ıd freq	uency	•	
	(c)	लोअर साइड बैंड आवृत्ति / Lower side ba	nd free	quency		
	(d)	उपरोक्त सभी / All of the above			- 88	